Skip to main content
Log in

Is the structure of hydroxide dihydrate OH(H2O)2? An ab initio path integral molecular dynamics study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We carried out ab initio path integral molecular dynamics simulations at room temperature for OH(H2O) n (n = 1, 2) clusters to elucidate the ionic hydrogen bond structure with full thermal and nuclear quantum effects. We found that the hydrogen-bonded proton is located near the water molecule in the case of n = 2, while the proton is located at the center between hydroxide ion and the water molecule in the case of n = 1. Thus, the solvated hydroxide structure \({\text{HO}}{-}{\text{H}} \cdots{\text{OH}}\) is found in n = 2, while the proton sharing hydroxide structure \({\text{HO}} \cdots {\text{H}} \cdots {\text{OH}}\) is in n = 1. We found that the nature of hydrogen bonds significantly changes with the number of water molecules around the hydroxide. We also compared these results with those of F(H2O) n (n = 1, 2) clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agmon N (2000) Mechanism of hydroxide mobility. Chem Phys Lett 319:247–252

    Article  CAS  Google Scholar 

  2. Tuckerman ME, Marx D, Parrinello M (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–929

    Article  CAS  Google Scholar 

  3. Robertson WH, Diken EG, Price A, Shin J-W, Johnson MA (2003) Spectroscopic Determination of the OH Solvation Shell in the OH(H2O)n clusters. Science 299:1367–1372

    Article  CAS  Google Scholar 

  4. Ludwig R (2003) New insight into the transport mechanism of hydrated hydroxide ions in water. Angew Chem Int Ed 42:258–260

    Article  CAS  Google Scholar 

  5. Suzuki K, Tachikawa M, Shiga M (2010) Efficient ab initio path integral hybrid Monte Carlo based on the fourth-order Trotter expansion: application to fluoride ion-water cluster. J Chem Phys 132:144108

    Article  Google Scholar 

  6. Kawashima Y, Suzuki K, Tachikawa M (2013) Ab initio Path integral simulations for the fluoride ion-water clusters: competitive nuclear quantum effect between—water and water-water hydrogen bonds. J Phys Chem A 117:5205–5210

    Article  CAS  Google Scholar 

  7. Choi J-H, Kuwata KT, Cao Y-B, Okumura M (1998) Vibrational spectroscopy of the Cl(H2O)n anion clusters, n = 1–5. J Phys Chem A 102:503–507

    Article  CAS  Google Scholar 

  8. Wang Q, Suzuki K, Nagashima U, Tachikawa M, Yan S (2013) Path integral molecular dynamics study of nuclear quantum effect on small chloride water clusters of Cl(H2O)1–4. Chem Phys 419:229–236

    Article  CAS  Google Scholar 

  9. Xantheas SS (1995) Theoretical study of hydroxide ion-water clusters. J Am Chem Soc 117:10373–10380

    Article  CAS  Google Scholar 

  10. Baik J, Kim J, Majumdar D, Kim KS (1999) Structures, energetics, and spectra of fluoride–water clusters F(H2O)n, n = 1–6: Ab initio study. J Chem Phys 110:9116–9127

    Article  CAS  Google Scholar 

  11. Chandhuri C, Wang Y-S, Jiang JC, Lee YT, Chang H-C, Niedner-Schatteburg G (2001) Infrared spectra and isomeric structures of hydroxide ion-water clusters OH(H2O)1–5: a comparison with H3O+(H2O)1–5. Mol Simul 99:1161–1173

    Google Scholar 

  12. Chaban GM, Xantheas SS, Gerber RB (2003) Anharmonic vibratinal spectroscopy of the F(H2O)n complexes, n = 1, 2. J Phys Chem A 107:4952–4956

    Article  CAS  Google Scholar 

  13. McCoy AB, Huang X, Carter S, Bowman JM (2005) Quantum studies of the vibrations in H3O2 and D3O2 . J Chem Phys 123:064317

    Article  Google Scholar 

  14. Samson CCM, Klopper W (2002) Ab initio calculation of proton barrier and binding energy of the (H2O)OH complex. J Mol Struc 586:201–208

    Article  CAS  Google Scholar 

  15. Roscioli JR, Diken EG, Johnson MA, Horvath S, McCoy AB (2006) Prying apart a water molecule with anionic H-bonding: a comparative spectroscopic study of the X − H2O(X = OH, O, F, Cl, and Br) binary complexes in the 600–3800 cm–region. J Phys Chem A 110:4943–4952

    Article  CAS  Google Scholar 

  16. Morita M, Takahashi K (2013) Multidimensional local mode calculations for the vibrational spectra of OH−(H2O)2 and OH−(H2O)2·Ar. Phys Chem Chem Phys 15:14973–14985

    Article  CAS  Google Scholar 

  17. Tuckerman ME, Marx D, Klein LM, Parrinello M (1997) On the quantum nature of the shared proton in hydrogen bonds. Science 275:817–820

    Article  CAS  Google Scholar 

  18. Tachikawa M, Shiga M (2005) Geometrical H/D Isotope effects on hydrogen bonds in charged water clusters. J Am Chem Soc 127:11908–11909

    Article  CAS  Google Scholar 

  19. Suzuki K, Shiga M, Tachikawa M (2008) Temperature and isotope effects on water cluster ions with path integral molecular dynamics based on the fourth order Trotter expansion. J Chem Phys 129:144310

    Article  Google Scholar 

  20. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635

    Article  Google Scholar 

  21. Kawashima Y, Tachikawa M (2013) Nuclear quantum effect on intramolecular hydrogen bond of hydrogen maleate anion: an ab initio path integral molecular dynamics study. Chem Phys Lett 571:23–27

    Article  CAS  Google Scholar 

  22. Kawashima Y, Tachikawa M (2014) Ab initio path integral molecular dynamics study of the nuclear quantum effect on out-of-plane ring deformation of hydrogen maleate anion. J Chem Theory Comput 10:153–163

    Article  CAS  Google Scholar 

  23. Ogata Y, Daido M, Kawashima Y, Tachikawa M (2013) Nuclear quantum effects on protonated lysine with asymmetric low barrier hydrogen bond: an ab initio path integral molecular dynamics study. RSC Adv 3:25252–25257

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Vahtras O, Almlöf J, Feyereisen MW (1993) Integral approximations for LCAO-SCF calculations. Chem Phys Lett 213:514–518

    Article  CAS  Google Scholar 

  27. Feyereisen MW, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363

    Article  CAS  Google Scholar 

  28. Ahlrichs R, Bär H, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  29. Kaledin M, Wood CA (2010) Ab initio studies of structural and vibrational properties of protonated water cluster H7O3 + and its deuterium isotopologues: an application of driven molecular dynamics. J Chem Theory Comput 6:2525–2535

    Article  CAS  Google Scholar 

  30. Parthasarathi R, Subramanian V, Sathyamurthy N (2007) Hydrogen bonding in protonated water clusters: an atoms-in-molecules perspective. J Phys Chem A 111:13287–13290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Grant-in-Aid for Scientific Research and for the priority area by Ministry of Education, Culture, Sports, Science, and Technology, Japan for YK and MT. KT thanks Academia Sinica, National Center for High Performance Computing of Taiwan and Ministry of Science and Technology (NSC100-2113-M-001-004-MY2, NSC 102-2113-M-001-012-MY3) of Taiwan for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Tachikawa.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogata, Y., Kawashima, Y., Takahashi, K. et al. Is the structure of hydroxide dihydrate OH(H2O)2? An ab initio path integral molecular dynamics study. Theor Chem Acc 134, 1587 (2015). https://doi.org/10.1007/s00214-014-1587-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1587-1

Keywords

Navigation