Skip to main content
Log in

Computational methodology for chirality determination in the Soai reaction by crystals: γ-glycine

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The autocatalytic Soai reaction gives abundant evidence of the enantioselective adsorption of organic compounds on a variety of crystals. Computational modelling can provide insight into mechanisms of enantioselectivity. Here, we use a combination of simulated annealing, forcefield, and quantum mechanical methods to examine interactions of pyrimidyl-5-carbaldehyde and 2-methylpyrimidyl-5-carbaldehyde with surfaces of γ-glycine. Using binding energy results, we predict the exposure of the pro-stereogenic S face of pyrimidyl-5-carbaldehyde (~65%) and 2-methylpyrimidyl-5-carbaldehyde (>90%) on the (1 \( \bar{1} \) 0) and (\( \bar{1} \) 1 0) surfaces. The aim is to develop a robust computational methodology that can be applied to understanding crystal-biased asymmetric synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (1997) Tetrahedron 8:2997–3017

    Article  CAS  Google Scholar 

  2. Soai K, Kawasaki T (2008) Top Curr Chem 284:1–33

    Article  CAS  Google Scholar 

  3. Soai K, Shibata T, Sato I (2004) Bull Chem Soc Jpn 77:1063–1073

    Article  CAS  Google Scholar 

  4. Soai K, Shibata T, Sato I (2000) Acc Chem Res 33:382–390

    Article  CAS  Google Scholar 

  5. Soai K, Shibata T, Morioka H, Choji K (1995) Nature 378:767–768

    Article  CAS  Google Scholar 

  6. Gehring T, Busch M, Schlageter M, Weingand D (2010) Chirality 22:E173–E182

    Article  CAS  Google Scholar 

  7. Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki H, Ito M, Soai K (2009) Science 324:492–495

    Article  CAS  Google Scholar 

  8. Singleton DA, Vo LK (2002) J Am Chem Soc 124:10010–10011

    Article  CAS  Google Scholar 

  9. Singleton DA, Vo LK (2003) Org Lett 5:4337–4339

    Article  CAS  Google Scholar 

  10. Islas JR, Lavabre D, Grevy J-M, Lamoneda RH, Cabrera HR, Micheau J-C, Buhse T (2005) Proc Natl Acad Sci 102:13743–13748

    Article  CAS  Google Scholar 

  11. Siegel JS (1998) Chirality 10:24–27

    CAS  Google Scholar 

  12. Mislow K (2003) Collect Czech Chem Commun 68:849–864

    Article  CAS  Google Scholar 

  13. Soai K, Kawasaki T (2006) Chirality 18:469–478

    Article  CAS  Google Scholar 

  14. Blackmond DG (2010) Cold Spring Harbor Persp Biol 2:a002147

    Article  Google Scholar 

  15. Lahav M, Weissbuch I (2011) Chem Rev 111:3226–3267

    Google Scholar 

  16. Sato I, Kadowaki K, Soai K (2000) Angew Chem Int Ed 39:1510–1512

    Article  CAS  Google Scholar 

  17. Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) J Am Chem Soc 121:11235–11236

    Article  CAS  Google Scholar 

  18. Sato I, Kadowaki K, Urabe H, Jung JH, Ono Y, Shinkai S, Soai K (2003) Tetrahedron Lett 44:721–724

    Article  CAS  Google Scholar 

  19. Kawasaki T, Harada Y, Suzuki K, Tobita T, Florini N, Palyi G, Soai K (2008) Org Lett 10:4085–4088

    Article  CAS  Google Scholar 

  20. Kawasaki T, Suzuki K, Hatase K, Otsuka M, Koshima H, Soai K (2006) Chem Commun 1869–1871

  21. Kawasaki T, Suzuki K, Hakoda Y, Soai K (2008) Angew Chem Int Ed 47:496–499

    Article  CAS  Google Scholar 

  22. Soai K, Sato I (2002) Chirality 14:548–554

    Article  CAS  Google Scholar 

  23. Kawasaki T, Jo K, Igarashi H, Sato I, Nagano M, Koshima H, Soai K (2005) Angew Chem Int Ed 44:2774–2777

    Article  CAS  Google Scholar 

  24. Klankermayer J, Gridnev ID, Brown JM (2007) Chem Commun 30:3151–3153

    Article  Google Scholar 

  25. Ercolani G, Schiaffino L (2011) J Org Chem 76:2619–2626

    Article  CAS  Google Scholar 

  26. Schiaffino L, Ercolani G (2010) Chem Eur J 16:3147–3156

    Article  CAS  Google Scholar 

  27. Schiaffino L, Ercolani G (2009) Chem Phys Chem 10:2508–2515

    Article  CAS  Google Scholar 

  28. Bernal JD (1931) Z Kristallogr 78:363–369

    CAS  Google Scholar 

  29. Iitaka Y (1961) Acta Crystallogr 14:1–10

    Article  CAS  Google Scholar 

  30. He G, Bhamidi V, Wilson SR, Tan RBH, Kenis PJA, Zukoski CF (2006) Cryst Growth Des 6:1746–1749

    Article  CAS  Google Scholar 

  31. Rungsimanon T, Yuyama K-I, Sugiyama T, Masuhara H, Tohnai N, Miyata M (2010) J Phys Chem Lett 1:599–603

    Article  CAS  Google Scholar 

  32. Weissbuch I, Leisorowitz L, Lahav M (1994) Adv Mater 6:952–956

    Article  CAS  Google Scholar 

  33. Dillip GR, Raghavalah R, Mallikarjuna K, Reddy CM, Bhagavannarayana G, Kumar VR, Raju BDP (2011) Spectrochim Acta Part A Mol Biomol Spectr 79:1123–1127

    Article  CAS  Google Scholar 

  34. Soai K (2012) private communication

  35. Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM (2001) J Am Chem Soc 123:10103–10104

    Article  CAS  Google Scholar 

  36. Buono FG, Blackmond DG (2003) J Am Chem Soc 125:8978–8979

    Article  CAS  Google Scholar 

  37. Blackmond DG (2004) Proc Natl Acad Sci USA 101:5732–5736

    Article  CAS  Google Scholar 

  38. Buono FG, Iwamura H, Blackmond DG (2004) Angew Chem Int Ed 43:2099–2103

    Article  CAS  Google Scholar 

  39. Klussmann M, Iwamura H, Mathew SP, Wells DH, Pandya U, Armstrong A, Blackmond DG (2006) Nature 441:621–623

    Article  CAS  Google Scholar 

  40. Blackmond DG (2006) Tetrahedron 17:584–589

    Article  CAS  Google Scholar 

  41. Gridnev ID, Serafimov JM, Quiney H, Brown JM (2003) Org Biomol Chem 1:3811–3819

    Article  CAS  Google Scholar 

  42. Gridnev ID, Brown JM (2004) Proc Natl Acad Sci USA 101:5727–5731

    Article  CAS  Google Scholar 

  43. Gridnev ID, Serafimov JM, Brown JM (2004) Angew Chem Int Ed 43:4884–4887

    Article  CAS  Google Scholar 

  44. Brown MJ, Gridnev I, Klankermayer J (2008) Top Curr Chem 284:35–65

    Article  CAS  Google Scholar 

  45. Schiaffino L, Ercolani G (2008) Angew Chem Int Ed 47:6832–6835

    Article  CAS  Google Scholar 

  46. Kahr B, Shtukenberg A, Gunn E, Carter DJ, Rohl AL (2011) Cryst Growth Des 11:2070–2073

    Article  CAS  Google Scholar 

  47. Accelrys Software Inc (2008) Materials studio release notes, release 4.4. Accelrys Software Inc, San Diego

  48. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  50. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Proteins Struct Funct Genet 4:31–47

    Article  CAS  Google Scholar 

  51. Sun H (1988) J Phys Chem B 102:7338–7364

    Article  Google Scholar 

  52. Sun H, Ren P, Fried JR (1988) Comp Theor Polym Sci 8:229–246

    Article  Google Scholar 

  53. Kvick A, Canning WM, Koetzle TF, Williams GJB (1980) Acta Crystallogr Sect B 36:115–120

    Article  CAS  Google Scholar 

  54. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Book  Google Scholar 

  55. Bijvoet JM, Peerdeman AF, van Bommel AJ (1951) Nature 168:271–272

    Article  CAS  Google Scholar 

  56. Flack HD, Bernardinelli G (2008) Chirality 20:681–690

    Article  CAS  Google Scholar 

  57. Dittrich B, Strumpel M, Schafer M, Spackman MA, Koritsanszky T (2006) Acta Crystallogr Sect A 62:217–223

    Article  CAS  Google Scholar 

  58. Weckert E, Hummer K (1997) Acta Crystallogr Sect A 53:108–143

    Article  Google Scholar 

  59. Kaminksy W, Jin L-W, Powell S, Maezawa I, Claborn K, Branham C, Kahr B (2006) Micron 37:324–338

    Article  Google Scholar 

  60. Clarborn K, Herreros CJ, Isborn C, Zoulay A, Weckert E, Kaminksy W, Kahr B (2006) J Am Chem Soc 128:14746–14747

    Article  Google Scholar 

  61. Weissbuch I, Leiserowitz L, Lahav M (2008) Chirality 20:736–748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BK thanks the United States National Science Foundation (NSF) for support of this research. ALR and DJC acknowledge the National Computational Infrastructure (NCI) National Facility and iVEC for access to computational resources. We are grateful to John Freudenthal for his efforts to establish the absolute structure of the crystals of γ-glycine optically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien J. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, D.J., Kahr, B. & Rohl, A.L. Computational methodology for chirality determination in the Soai reaction by crystals: γ-glycine. Theor Chem Acc 131, 1125 (2012). https://doi.org/10.1007/s00214-012-1125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1125-y

Keywords

Navigation