Skip to main content
Log in

Exploration of cyclopropyl radical ring opening to allyl radical by Newton trajectories: importance of valley-ridge inflection points to understand the topography

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Valley-ridge inflection points (VRI) on the potential energy surface for the ring opening of the cyclopropyl radical to allyl radical are determined using the tool of Newton trajectories (Quapp and Schmidt in Theor Chem Acc 128:47, 2011). VRIs play a role in the understanding of bifurcating reactions. The region where the bifurcation takes place is usually governed by a VRI point. For this important ring opening, the knowledge of the VRI point after the transition state was demanded some years ago (Mann and Hase in J Am Chem Soc 124:3208, 2002). Because the transition state is not symmetric, also the steepest descent from the transition state is not along a symmetry axis, and in such cases the steepest descent can fail the VRI point. That is the case here, indeed, though the pathway of the steepest descent goes near to a VRI point downhill. However, an electronic intersection seam disturbs the relations. The exploration of the notorious curvilinear potential energy surface of this ring opening has delivered some further VRI points, which are reported. They give a frame for possible ring-opening channels including the conrotatory case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

Notes

  1. Gamess-US program: [19, 20].

References

  1. Mezey PG (1987) Potential energy hypersurfaces. Elsevier, Amsterdam

    Google Scholar 

  2. Heidrich D (ed) (1995) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht

    Google Scholar 

  3. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  4. Hofmann DK, Nord RS, Ruedenberg K (1986) Theor Chem Acta 69:265

    Article  Google Scholar 

  5. Sun J-Q, Ruedenberg K (1993) J Chem Phys 98:9707

    Article  CAS  Google Scholar 

  6. Quapp W (1989) Theor Chem Acta 75:447

    Article  CAS  Google Scholar 

  7. Williams IH, Maggiora GM (1982) J Mol Struct 89:365

    Google Scholar 

  8. Quapp W, Hirsch M, Heidrich D (1998) Theor Chem Acc 100:285

    CAS  Google Scholar 

  9. Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Comput Chem 19:1087

    Article  CAS  Google Scholar 

  10. Quapp W (2001) J Comput Chem 22:537

    Article  Google Scholar 

  11. Hirsch M, Quapp W (2002) J Comput Chem 23:887

    Article  CAS  Google Scholar 

  12. Anglada JM, Besalú E, Bofill JM, Crehuet R (2001) J Comput Chem 22:387

    Article  CAS  Google Scholar 

  13. Bofill JM, Anglada JM (2001) Theor Chem Acc 105:463

    Article  CAS  Google Scholar 

  14. Crehuet R, Bofill JM, Anglada JM (2002) Theor Chem Acc 107:130

    CAS  Google Scholar 

  15. Quapp W (2004) J Molec Struct 695(-696):95

    Article  Google Scholar 

  16. Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69:281

    Article  CAS  Google Scholar 

  17. Bofill JM, Quapp W (2011) J Chem Phys 134:074101

    Article  Google Scholar 

  18. Quapp W, Schmidt B (2011) Theor Chem Acc 128:47

    Article  CAS  Google Scholar 

  19. Schmidt MV, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  20. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry, the first forty years, chap 41. Elsevier, Amsterdam, p 1167 (GAMESS Version 2007)

  21. Quapp W (2010) web-page: http://www.math.uni-leipzig.de/~quapp/SkewVRIs.html

  22. Woodward RB, Hoffmann R (1965) J Am Chem Soc 87:395

    Article  CAS  Google Scholar 

  23. Woodward RB, Hoffmann R (1969) Angew Chem Int Ed Engl 8:781

    Article  CAS  Google Scholar 

  24. Clark DT, Adams DB (1971) Nature Phys Sci 233:121

    Article  CAS  Google Scholar 

  25. Olivella S, Solé A, Bofill JM (1990) J Am Chem Soc 112:2160

    Article  CAS  Google Scholar 

  26. Arnold PA, Carpender BK (2000) Chem Phys Lett 328:90

    Article  CAS  Google Scholar 

  27. Mann DJ, Hase WL (2002) J Am Chem Soc 124:3208

    Article  CAS  Google Scholar 

  28. Mann DJ, Halls MD (2002) Phys Chem Chem Phys 4:5066

    Article  CAS  Google Scholar 

  29. Aguilar-Mogas A, Giménez X, Bofill JM (2010) J Comput Chem 31:2510

    CAS  Google Scholar 

  30. Lucas JM, de Andrés J, Albertí M, Bofill JM, Bassi D, Aguilar A (2010) Phys Chem Chem Phys 12:13646

    Article  CAS  Google Scholar 

  31. Pulay P, Hamilton TP (1988) J Chem Phys 88:4926

    Article  CAS  Google Scholar 

  32. Bofill JM, Pulay P (1989) J Chem Phys 90:3637

    Article  CAS  Google Scholar 

  33. Arnold PA, Cosofret BR, Dylewski SM, Houston PL, Carpenter BK (2001) J Phys Chem A 105:1693

    Article  CAS  Google Scholar 

  34. Yarkony DR (1996) Rev Mod Phys 68:985

    Article  CAS  Google Scholar 

  35. Martinez TJ (2010) Nature 467:412

    Article  CAS  Google Scholar 

  36. Holtzhauer K, Cometta-Morini C, Oth JFM (1990) J Phys Org Chem 3:219

    Article  CAS  Google Scholar 

  37. Dong F, Davis S, Nesbitt DJ (2006) J Phys Chem 110:3059

    CAS  Google Scholar 

  38. Hirsch H, Quapp W, Heidrich D (1999) Phys Chem Chem Phys 1:5291

    Article  CAS  Google Scholar 

  39. Quapp W, Hirsch M, Heidrich D (2004) Theor Chem Acc 112:40

    CAS  Google Scholar 

  40. Pechukas P (1976) J Chem Phys 64:1516

    Article  CAS  Google Scholar 

  41. Thompson JMT, Stewart HB, Ueda Y (1994) Phys Rev E 49:1019

    Article  Google Scholar 

  42. Robb MA, Olivucci M (2001) J Photochem Photobiol A 5373:1

    Google Scholar 

  43. Longuet-Higgins HC, Abrahamson EW (1965) J Am Chem Soc 87:2045

    Article  CAS  Google Scholar 

  44. Schultz T, Clarke JS, Gilbert T, Deyerl H-J, Fischer I (2000) Faraday Discuss 115:17

    Article  CAS  Google Scholar 

  45. Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918

    Article  CAS  Google Scholar 

  46. Voth GA, Hochstrasser RM (1996) J Phys Chem 100:13034

    Article  CAS  Google Scholar 

  47. Knyazev VD (2002) J Phys Chem A 106:8741

    Article  CAS  Google Scholar 

  48. O’Neal D, Taylor H, Simons J (1984) J Phys Chem 88:1510

    Article  Google Scholar 

  49. Sun L, Song K, Hase WL (2002) Science 296:875

    Article  CAS  Google Scholar 

  50. Debbert SL, Carpender BK, Hrovat DA, Borden WT (2002) J Am Chem Soc 124:7896

    Article  CAS  Google Scholar 

  51. Ammal SC, Yamataka H, Aida M, Dupuis M (2003) Science 299:1555

    Article  CAS  Google Scholar 

  52. López JG, Vayner G, Lourderaj U, Addepalli SV, Kata S, deJong WA, Windus TL, Hase WL (2007) J Am Chem Soc 129:9976

    Article  Google Scholar 

  53. Hirsch M, Quapp W (2004) J Mol Struct 683:1

    CAS  Google Scholar 

  54. Hirsch M, Quapp W (2004) J Math Chem 36:307

    Article  CAS  Google Scholar 

  55. Quapp W (2009) J Theor Comput Chem 8:101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministerio de Ciencia y Tecnologia, DGI project CTQ2008-02856/BQU and, in part from the Generalitat de Catalunya projects 2009SGR-1472, is fully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quapp, W., Bofill, J.M. & Aguilar-Mogas, A. Exploration of cyclopropyl radical ring opening to allyl radical by Newton trajectories: importance of valley-ridge inflection points to understand the topography. Theor Chem Acc 129, 803–821 (2011). https://doi.org/10.1007/s00214-011-0938-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0938-4

Keywords

Navigation