Skip to main content
Log in

Analysis of the metal–ligand bonds in [Mo(X)(NH2)3] (X = P, N, PO, and NO), [Mo(CO)5(NO)]+, and [Mo(CO)5(PO)]+

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum chemical calculations at the DFT level have been carried out for model complexes [Mo(P)(NH2)3] (1), [Mo(N)(NH2)3] (2), [Mo(PO)(NH2)3] (3), [Mo(NO)(NH2)3] (4), [Mo(CO)5(PO)]+ (5), and [Mo(CO)5(NO)]+ (6). The equilibrium geometries and the vibration frequencies are in good agreement with experimental and previous theoretical results. The nature of the Mo–PO, Mo–NO, Mo–PO+, Mo–NO+, Mo–P, and Mo–N bond has been investigated by means of the AIM, NBO and EDA methods. The NBO and EDA data complement each other in the interpretation of the interatomic interactions while the numerical AIM results must be interpreted with caution. The terminal Mo–P and Mo–N bonds in 1 and 2 are clearly electron-sharing triple bonds. The terminal Mo–PO and Mo–NO bonds in 3 and 4 have also three bonding contributions from a σ and a degenerate π orbital where the σ components are more polarized toward the ligand end and the π orbitals are more polarized toward the metal end than in 1 and 2. The EDA calculations show that the π bonding contributions to the Mo–PO and Mo–NO bonds in 3 and 4 are much more important than the σ contributions while σ and π bonding have nearly equal strength in the terminal Mo–P and Mo–N bonds in 1 and 2. The total (NH2)3Mo–PO binding interactions are stronger than for (NH2)3Mo–P which is in agreement with the shorter Mo–PO bond. The calculated bond orders suggest that there are only (NH2)3Mo–PO and (NH2)3Mo–NO double bonds which comes from the larger polarization of the σ and π contributions but a closer inspection of the bonding shows that these bonds should also be considered as electron-sharing triple bonds. The bonding situation in the positively charged complexes [(CO)5Mo–(PO)]+ and [(CO)5Mo–(NO)]+ is best described in terms of (CO)5Mo → XO+ donation and (CO)5Mo ← XO+ backdonation (X = P, N) using the Dewar–Chatt–Duncanson model. The latter bonds are stronger and have a larger π character than the Mo-CO bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma RD (1972) Can J Phys 50: 1579

    Google Scholar 

  2. Verma RD (1973) Can J Phys 51: 322

    CAS  Google Scholar 

  3. Prudhomme JC, Coquart B (1974) Can J Phys 52: 2150

    CAS  Google Scholar 

  4. Haraguchi H, Fowler WK, Johnson DJ, Winefordner JD (1976) Spectrochem Acta Part A 32A: 1539

    Article  CAS  Google Scholar 

  5. Dyke JM, Morris A, Ridha A (1982) J Chem Soc Faraday Trans 2(78): 207

    Google Scholar 

  6. Kawaguchi K, Saito S, Hirota E (1983) J Chem Phys 79: 629

    Article  CAS  Google Scholar 

  7. Kanata H, Yamamoto S, Saito S (1988) J Mol Spectrosc 131: 89

    Article  CAS  Google Scholar 

  8. Robertson EG, McNaughton D (2003) J Phys Chem A 107: 642

    Article  CAS  Google Scholar 

  9. Midda S, Das AK (2004) Int J Quantum Chem 98: 447

    Article  CAS  Google Scholar 

  10. Turner BE (1991) Astrophys J 376: 573

    Article  CAS  Google Scholar 

  11. Atalla RM, Singh PD (1987) Astrophys Space Sci 133: 267

    Article  CAS  Google Scholar 

  12. Matthews HE, Feldman PA, Bernath PF (1987) Astrophys J 312: 358

    Article  CAS  Google Scholar 

  13. Davies JE, Klunduk MC, Mays MJ, Raithby PR, Shields GP, Tompkin PK (1997) J Chem Soc Dalton Trans 715

  14. Scherer OJ, Weigel S, Wolmershäuser G (1999) Heteroat Chem 10: 622

    Article  CAS  Google Scholar 

  15. Scherer OJ, Weigel S, Wolmershäuser G (1999) Angew Chem Int Ed 38: 3688

    Article  CAS  Google Scholar 

  16. Corrigan JF, Doherty S, Taylor NJ, Carty AJ (1994) J Am Chem Soc 116: 9799

    Article  CAS  Google Scholar 

  17. Wang W, Corrigan JF, Doherty S, Enright GD, Taylor NJ, Carty AJ (1996) Organometallics 15: 2770

    Article  CAS  Google Scholar 

  18. Johnson MJA, Odom AL, Cummins CC (1997) Chem Commun 1523

  19. Yamamoto JH, Udachin KA, Enright GD, Carty AJ (1998) Chem Comm 2259

  20. Yamamoto JH, Scoles L, Udachin KA, Enright GD, Carty AJ (2000) J Organomet Chem 600: 84

    Article  CAS  Google Scholar 

  21. Scoles L, Yamamoto JH, Brissieux L, Sterenberg BT, Udachin KA, Carty AJ (2001) Inorg Chem 40: 6731

    Article  CAS  Google Scholar 

  22. Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Coord Chem Rev 236: 57 (and references therein)

    Article  CAS  Google Scholar 

  23. Ford PC, Lorkovic IM (2002) Chem Rev 102: 993

    Article  CAS  Google Scholar 

  24. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk A (2002) Chem Rev 102: 1091

    Article  CAS  Google Scholar 

  25. Lorkovic IM, Miranda KM, Lee B, Bernhard S, Schoonover JR, Ford PC (1998) J Am Chem Soc 120: 11674

    Article  CAS  Google Scholar 

  26. Borges SSS, Davanzo CU, Castellano EE, Z-Schpector J, Silva SC, Franco DW (1998) Inorg Chem 37: 2670

    Article  CAS  Google Scholar 

  27. Thiemens MW, Trogler WC (1991) Science 251: 932

    Article  CAS  Google Scholar 

  28. Laplaza CE, Odom AL, Davis WM, Cummins CC (1995) J Am Chem Soc 117: 4999

    Article  CAS  Google Scholar 

  29. Maxwell LR, Hendricks SB, Deming LS (1937) J Chem Phys 5: 626

    Article  CAS  Google Scholar 

  30. Hampson GC, Stosick AJ (1938) J Am Chem Soc 60: 1814

    Article  CAS  Google Scholar 

  31. Scherer OJ, Braun J, Walther P, Heckmann G, Wolmershäuser G (1991) Angew Chem Int Ed Engl 30: 852

    Article  Google Scholar 

  32. Lohr LL (1984) J Phys Chem 88: 5569

    Article  CAS  Google Scholar 

  33. Butler K, Kawaguchi EH (1983) J Mol Spectrosc 101: 161

    Article  CAS  Google Scholar 

  34. Andrews L, McCluskey M, Mielke Z, Withnall R (1990) J Mol Struct 222: 95 (and references therein)

    Article  CAS  Google Scholar 

  35. Hermann AW (1991) Angew Chem Int Ed Engl 30: 818

    Article  Google Scholar 

  36. Laplaza CE, Davis WM, Cummins CC (1995) Angew Chem Int Ed Engl 34: 2042

    Article  CAS  Google Scholar 

  37. Zanetti NC, Schrock RR, Davis WM (1995) Angew Chem Int Ed Engl 34: 2044

    Article  CAS  Google Scholar 

  38. Bérces A, Koentjoro O, Sterenberg BT, Yamamoto JH, Tse J, Carty AJ (2000) Organometallics 19: 4336

    Article  Google Scholar 

  39. Foerstner J, Olbrich F, Butenschon H (1996) Angew Chem Int Ed Engl 35: 1234

    Article  CAS  Google Scholar 

  40. Wagener T, Frenking G (1998) Inorg Chem 37: 1805

    Article  CAS  Google Scholar 

  41. Dewar MJS (1951) Bull Soc Chim Fr 18: C79

    Google Scholar 

  42. Chatt J, Duncanson LA (1953) J Chem Soc 2929

  43. Frenking G (2001) J Organomet Chem 635: 9

    Article  CAS  Google Scholar 

  44. Frenking G (2002) In: Leigh GJ, Winterton N (eds) Modern coordination chemistry: the legacy of Joseph Chatt, The Royal Society, London, p 111

  45. Bader RFW (1991) Chem Rev 91: 893

    Article  CAS  Google Scholar 

  46. Bader RFW (1990) Atoms in molecules. Claredon Press, Oxford

    Google Scholar 

  47. Reed AE, Weinhold F (1983) J Chem Phys 78: 4066

    Article  CAS  Google Scholar 

  48. Becke AD (1988) Phys Rev A 38: 3098

    Article  CAS  Google Scholar 

  49. Perdew JP (1986) Phys Rev B 33: 8822

    Article  Google Scholar 

  50. Snijders JG, Baerends EJ, Vernooijs P (1982) At Nucl Data Tables 26: 483

    Article  Google Scholar 

  51. Krijn J, Baerends EJ (1984) Fit functions in the HFS method, internal report (in Dutch), Vrije Universiteit, Amsterdam

  52. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99: 4597

    Article  Google Scholar 

  53. van Lenthe E, Baerends EJ, Snijders JG (1996) J Chem Phys 105: 6505

    Article  Google Scholar 

  54. van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57: 281

    Article  Google Scholar 

  55. Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem 15: 1

    Article  CAS  Google Scholar 

  56. te Velde G, Bickelhaupt FM, Baerends EJ, van Gisbergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T (2001) J Comput Chem 22: 931

    Article  Google Scholar 

  57. Morokuma K (1971) J Chem Phys 55: 1236

    Article  CAS  Google Scholar 

  58. Morokuma K (1977) Acc Chem Res 10: 294

    Article  CAS  Google Scholar 

  59. Ziegler T, Rauk A (1977) Theor Chim Acta 46: 1

    CAS  Google Scholar 

  60. Esterhuysen C, Frenking G (2004) Theor Chem Acc 111: 81

    Google Scholar 

  61. Kovács A, Esterhuysen C, Frenking G (2005) Chem Eur J 11: 1813

    Article  Google Scholar 

  62. Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003) Coord Chem Rev 55: 238–239

    Google Scholar 

  63. Frenking G, Fröhlich N (2000) Chem Rev 100: 717

    Article  CAS  Google Scholar 

  64. Lein M, Frenking G (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, p 291

  65. Heitler W, London F (1927) Z Phys 44: 455

    Article  CAS  Google Scholar 

  66. Bader RFW (1995) AIMPAC—Source code obtained from the AIMPAC site at http://www.chemistry.mcmaster.ca/aimpac/aimpac.html McMaster University, Hamilton

  67. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

  68. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford

  69. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77: 123

    Article  CAS  Google Scholar 

  70. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97: 2571

    Article  CAS  Google Scholar 

  71. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100: 5829

    Article  CAS  Google Scholar 

  72. Laplaza CE, Johnson MJA, Peters JC, Odom AL, Kim E, Cummins CC, George GN, Pickering IJ (1996) J Am Chem Soc 118: 8623

    Article  CAS  Google Scholar 

  73. Figueroa JS, Piro NA, Clough CR, Cummins CC (2006) J Am Chem Soc 128: 940

    Article  CAS  Google Scholar 

  74. Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Organometallics 15: 105

    Article  CAS  Google Scholar 

  75. Wiberg K (1968) Tetrahedron 24: 1083

    Article  CAS  Google Scholar 

  76. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23: 627

    Article  Google Scholar 

  77. Frenking G, Wichmann K, Fröhlich N, Grobe J, Golla W, Le Van D, Krebs B, Läge M (2002) Organometallics 21: 2921

    Article  CAS  Google Scholar 

  78. Fischer RA, Schulte MM, Weiß J, Zsolnai L, Jacobi A, Huttner G, Frenking G, Boehme C, Vyboishchikov SF (1998) J Am Chem Soc 120: 1237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Frenking.

Additional information

Contribution to the Nino Russo 60th Birthday Festschrift Issue.

Theoretical Studies of Inorganic Compounds. 39. Part 38: A. Krapp, M. Lein, G. Frenking, Theoret. Chem. Acc., ASAP.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM (PDF 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caramori, G.F., Frenking, G. Analysis of the metal–ligand bonds in [Mo(X)(NH2)3] (X = P, N, PO, and NO), [Mo(CO)5(NO)]+, and [Mo(CO)5(PO)]+ . Theor Chem Account 120, 351–361 (2008). https://doi.org/10.1007/s00214-008-0435-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0435-6

Keywords

Navigation