Skip to main content
Log in

Valence Bond – Rebirth of the Phoenix or Relic from the Stone Age

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The valence bond (VB) method has enjoyed its prime time during the early stages in the field of quantum chemistry. After the advent of molecular orbital methods VB lost its popularity but continued to be improved and refined by a small community of scientists who appreciated its power of revealing insight into the origins of chemical reactivity. This review summarizes the developments of the VB theory in the past few decades by focusing on two major areas of research: studies of the reactivity of small chemical systems and discovering the origins of enzyme catalysis. In both cases the unique capabilities of VB that facilitated discoveries of new concepts in an elegant and seemingly effortless way are discussed. It is suggested that owing to the success of these discoveries VB methodology is once again steadily gaining momentum. It is believed that VB concepts will play a major role in the future of theoretical chemistry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heitler W, London F (1927). Z Phys 44:455

    Article  CAS  Google Scholar 

  2. London F (1928). Z Phys 46:455

    Article  CAS  Google Scholar 

  3. Rumer G (1932). Göttinger Nach :337

  4. Pauling L (1939). The nature of the chemical bond. Cornell University Press, Ithaca, New York

    Google Scholar 

  5. Huckel E (1930). Z Phys 60:423

    Article  CAS  Google Scholar 

  6. Huckel E (1931). Z Phys 72:310

    Article  CAS  Google Scholar 

  7. Huckel E (1934). Trans Faraday Soc 30:40

    Article  CAS  Google Scholar 

  8. Dewar MJS (1952). J Am Chem Soc 74:3341

    Article  CAS  Google Scholar 

  9. Roothaan CCJ (1951). Rev Mod Phys 23:69

    Article  CAS  Google Scholar 

  10. Walsh AD (1953). J Chem Soc:2260

    Article  Google Scholar 

  11. Fukui K, Yonezawa T, Shingu H (1952). J Chem Phys 20:722

    Article  CAS  Google Scholar 

  12. Fukui K (1982). Science 218:747

    CAS  Google Scholar 

  13. Woodward RB, Hoffmann R (1969). Angew Chem Int Ed Engl 8:781

    Article  CAS  Google Scholar 

  14. Hoffmann R, Woodward RB (1968). Acc Chem Res 1:17

    Article  CAS  Google Scholar 

  15. Cooper DL, Gerratt J, Raimondi M (1991). Chem Rev 91:929

    Article  CAS  Google Scholar 

  16. Hoffmann R, Shaik S, Hiberty PC (2003). Acc Chem Res 36:750

    Article  PubMed  CAS  Google Scholar 

  17. Roberts JD (2004). Acc Chem Res 37:417

    Article  PubMed  CAS  Google Scholar 

  18. Streitwieser A (2004). Acc Chem Res 37:419

    Article  PubMed  CAS  Google Scholar 

  19. Shaik S, Hiberty PC (2003). Helv Chim Acta 86:1063

    Article  CAS  Google Scholar 

  20. Shaik S, Hiberty PC (2004). Rev Comput Chem 20:1

    Article  CAS  Google Scholar 

  21. Evans MG, Polanyi M (1938). Trans Faraday Soc 34:11

    Article  CAS  Google Scholar 

  22. Truhlar DG, Wyatt RE (1977). Adv Chem Phys 36:141

    CAS  Google Scholar 

  23. Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984). Molecular potential energy functions. Wiley, New York

    Google Scholar 

  24. Coulson CA, Fischer I (1949). Phil Mag 40:386

    CAS  Google Scholar 

  25. Bobrowicz FW, Goddard WA III (1977). In: Schaefer HF III (ed). Methods of electronic structure theory, Vol 3. Plenum Press, New York, p 79

  26. Hunt WJ, Hays PJ, Goddard WA, III (1972). J Chem Phys 57:738

    Article  Google Scholar 

  27. Goddard WA III, Harding LB (1978). Annu Rev Phys Chem 29:363

    Article  CAS  Google Scholar 

  28. Cooper DL, Gerratt J, Raimondi M (1988). Int Rev Phys Chem 7:59

    Article  CAS  Google Scholar 

  29. Hiberty PC, Flament JP, Noizet E (1992). Chem Phys Lett 189:259

    Article  CAS  Google Scholar 

  30. Carter EA, Goddard WA, III (1988). J Chem Phys 88:3132

    Article  CAS  Google Scholar 

  31. Hiberty PC, Leforestier C (1978). J Am Chem Soc 100:2012

    Article  CAS  Google Scholar 

  32. Bernardi F, Olivucci M, McDouall JJW, Robb MA (1988). J Chem Phys 89:6365

    Article  CAS  Google Scholar 

  33. Bernardi F, Celani P, Olivucci M, Robb MA, Suzzi-Valli G (1995). J Am Chem Soc 117:10531

    Article  CAS  Google Scholar 

  34. Blancafort L, Celani P, Bearpark MJ, Robb MA (2003). Theor Chem Acc 110:92

    CAS  Google Scholar 

  35. Thorsteinsson T, Cooper DL, Gerrat J, Karadakov PB, Raimondi M (1996). Theor Chim Acta (Berl). 93:343

    Article  CAS  Google Scholar 

  36. Cooper DL, Thorsteinsson T, Gerratt J (1997). Int J Quant Chem 65:439

    Article  CAS  Google Scholar 

  37. Hirao H, Nakano H, Nakayama K (1997). J Chem Phys 107:9966

    Article  CAS  Google Scholar 

  38. Nakano H, Sorakubo K, Nakayama K, Hirao H (2002). In: Cooper DL (ed). Valence bond theory, Elsevier, Amsterdam, p 55

  39. van Lenthe JH, Balint-Kurti GG (1983). J Chem Phys 78:5699

    Article  Google Scholar 

  40. Hiberty PC, Humbel S, Byrman CP, van Lenthe JH (1994). J Chem Phys 101:5969

    Article  CAS  Google Scholar 

  41. Matsen FA (1964). Adv Quantum Chem 1:60

    Google Scholar 

  42. McWeeny R (1988). Int J Quantum Chem XXXIV:23

    Google Scholar 

  43. Wu W, Mo Y, Zhang Q (1993). J Mol Struct (THEOCHEM). 283:227

    Article  Google Scholar 

  44. Song L, Wu W, Mo Y, Zhang Q (2003). XMVB-0.1 – An ab initio non-orthogonal valence bond program. Xiamen University, Xiamen – China

    Google Scholar 

  45. Song LC, Mo YR, Zhang QN, Wu W (2005). J comput Chem 26:514

    Article  PubMed  CAS  Google Scholar 

  46. Verbeek J, van Lenthe JH, Pulay P (1991). Mol Phys 73:1159

    Google Scholar 

  47. Verbeek J, Langenberg JH, Byrman CP, Dijkstra F, van Lenthe JH (1998). TURTLE: an ab-initio VB/VBSCF program, (now implemented in Gamess).

  48. Hiberty PC, Shaik S (2002). Theor Chem Acc 108:255

    CAS  Google Scholar 

  49. Shaik SS (1981). J Am Chem Soc 103:3692

    Article  CAS  Google Scholar 

  50. Pross A, Shaik SS (1983). Acc Chem Res 16:363

    Article  CAS  Google Scholar 

  51. Shaik SS (1989). In: Bertran J, Csizmadia GI (eds). In: New theoretical concepts for understanding organic reactions NATO ASISeries, Vol C267. Kluwer, Dordrecht, Holland

  52. Shaik SS, Hiberty PC (1991). In: Maksic ZB (ed). Theoretical concepts for chemical bonding, Vol 4. Springer, Berlin Heidelberg New York, p 324

  53. Shaik S, Hiberty PC (1995). Adv quantum chem 26:99

    CAS  Google Scholar 

  54. Shaik S, Shurki A (1999). Angew Chem Int Ed Engl 38:587

    Article  CAS  Google Scholar 

  55. Hiberty PC, Danovich D, Shurki A, Shaik S (1995). J Am Chem Soc 117:7760

    Article  CAS  Google Scholar 

  56. Shaik S, Shurki A, Danovich D, Hiberty PC (2001). Chem Rev 101:1501

    Article  PubMed  CAS  Google Scholar 

  57. Kollmar H (1979). J Am Chem Soc 101:4832

    Article  CAS  Google Scholar 

  58. Hess BJ, Schaad L (1983). J Am Chem Soc 105:7500

    Article  CAS  Google Scholar 

  59. Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987). J Am Chem Soc 109:363

    Article  CAS  Google Scholar 

  60. Glendening ED, Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993). J Am Chem Soc 115:10952

    Article  CAS  Google Scholar 

  61. Behrens S, Koester AM, Jug K (1994). J Org Chem 59:2546

    Article  CAS  Google Scholar 

  62. Mo Y, Wu W, Zhang Q (1994). J Phys Chem 98:10048

    Article  CAS  Google Scholar 

  63. Minkin VI, Glukhovtsev MN, Simkin BY (1994). Aromaticity and antiaromaticity. Wiley, New York

    Google Scholar 

  64. Streitwieser AJ (1961). Molecular orbital theory for organic chemists. Wiley, New York

    Google Scholar 

  65. Badgor GM (1969). Aromatic character and aromaticity. Cambridge University Press, Cambridge, London

    Google Scholar 

  66. Garratt JP (1986). Aromaticity. Wiley, New York

    Google Scholar 

  67. Deniz AA, Peters KS, Snyder GJ (1999). Science 286:1119

    Article  PubMed  CAS  Google Scholar 

  68. George P, Trachtman M, Bock CW, Brett AM (1976). Tetrahedron 32:1357

    Article  CAS  Google Scholar 

  69. Haas Y, Zilberg S (1995). J Am Chem Soc 117:5387

    Article  CAS  Google Scholar 

  70. Shaik S, Zilberg S, Haas Y (1996). Acc Chem Res 29:211

    Article  CAS  Google Scholar 

  71. Shaik S, Shurki A, Danovich D, Hiberty PC (1996). J Am Chem Soc 18:666

    Article  Google Scholar 

  72. Shurki A, Shaik S (1997). Angew Chem Int Ed Engl 36:2205

    Article  CAS  Google Scholar 

  73. Warshel A, Bromberg A (1970). J Chem Phys 52:1262

    Article  CAS  Google Scholar 

  74. Raff LM, Stivers L, Proter RN, Thompson DL, Sims LB (1970). J Chem Phys 52:3449

    Article  CAS  Google Scholar 

  75. Warshel A, Levitt M (1976). J Mol Biol 103:227

    PubMed  CAS  Google Scholar 

  76. Warshel A, Weiss RM (1980). J Am Chem Soc 102:6218

    Article  CAS  Google Scholar 

  77. Warshel A (1991). Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York

    Google Scholar 

  78. Åqvist J, Warshel A (1993). Chem Rev 93:2523

    Article  Google Scholar 

  79. Warshel A (2003). Annu Rev Bioph Biom 32:425

    Article  CAS  Google Scholar 

  80. Zwanzig RW (1954). J Chem Phys 22:1420

    Article  CAS  Google Scholar 

  81. Valleau JP, Torrie GM (1977). Modern theoretical chemistry. Plenum Press, New York

    Google Scholar 

  82. Hwang J-K, Warshel A (1987). J Am Chem Soc 109:715

    Article  CAS  Google Scholar 

  83. Hwang J-K, King G, Creighton S, Warshel A (1988). J Am Chem Soc 110:5297

    Article  CAS  Google Scholar 

  84. King G, Warshel A (1990). J Chem Phys 93:8682

    Article  CAS  Google Scholar 

  85. Muller RP, Warshel A (1995). J Phys Chem 99:17516

    Article  CAS  Google Scholar 

  86. Villa J, Warshel A (2001). J Phys Chem B 105:7887

    Article  CAS  Google Scholar 

  87. Warshel A, Parson WW (2001). Q Rev Biophys 34:563

    PubMed  CAS  Google Scholar 

  88. Shurki A, Warshel A (2003). Adv Prot Chem 66:249

    Article  CAS  Google Scholar 

  89. Warshel A (2002). Acc Chem Res 35:385

    Article  PubMed  CAS  Google Scholar 

  90. Warshel A, Russell ST (1984). Q Rev Biophys 17:283

    Article  PubMed  CAS  Google Scholar 

  91. Åqvist J, Fothergill M (1996). J Biol Chem 271:10010

    Article  PubMed  Google Scholar 

  92. Luzhkov V, Åqvist J (1998). J Am Chem Soc 120:6131

    Article  CAS  Google Scholar 

  93. Schmitt UW, Voth GA (1998). J Phys Chem B 102:5547

    Article  CAS  Google Scholar 

  94. Schmitt UW, Voth GA (1999). J Chem Phys 111:9361

    Article  CAS  Google Scholar 

  95. Vuilleumier R, Borgis D (1997). J Mol Struct 436–437:555

    Article  Google Scholar 

  96. Vuilleumier R, Borgis D (1998). Chem Phys Let 284:71

    Article  CAS  Google Scholar 

  97. Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001). J Am Chem Soc 123:11262

    Article  PubMed  CAS  Google Scholar 

  98. Hammes-Schiffer S, Billeter SR (2001). Int Rev Phys Chem 20:591

    Article  CAS  Google Scholar 

  99. Neria E, Karplus M (1997). Chem Phys Lett 267:23

    Article  CAS  Google Scholar 

  100. Bruice TC (2002). Acc Chem Res 35:139

    Article  PubMed  CAS  Google Scholar 

  101. Bruice TC, Lightstone FC (1999). Acc Chem Res 32:127

    Article  CAS  Google Scholar 

  102. Hur S, Bruice TC (2003). Proc Nat Acad Sci 100:12015

    Article  PubMed  CAS  Google Scholar 

  103. Shurki A, Štrajbl M, Villa J, Warshel A (2002). J Am Chem Soc 124:4097

    Article  PubMed  CAS  Google Scholar 

  104. Marcus RA (1964). Ann Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  105. Štrajbl M, Shurki A, Kato M, Warshel A (2003). J Am Chem Soc 125:10228

    Article  PubMed  CAS  Google Scholar 

  106. Langen R, Schweins T, Warshel A (1992). Biochemistry 31:8691

    Article  PubMed  CAS  Google Scholar 

  107. Schweins T, Geyer M, Kalbitzer HR, Wittinghofer A, Warshel A (1996). Biochemistry 35:14225

    Article  PubMed  CAS  Google Scholar 

  108. Schweins T, Warshel A (1996). Biochemistry 35:14232

    Article  PubMed  CAS  Google Scholar 

  109. Shurki A, Warshel A (2004). Proteins 55:1

    Article  PubMed  CAS  Google Scholar 

  110. Glennon TM, Villa J, Warshel A (2000). Biochemistry 39:9641

    Article  PubMed  CAS  Google Scholar 

  111. Chang Y-T, Miller WH (1990). J Phys Chem 94:5884

    Article  CAS  Google Scholar 

  112. Chang Y-T, Minichino C, Miller WH (1992). J Chem Phys 96:4341

    Article  CAS  Google Scholar 

  113. Grochowski P, Lesyng B, Bala P, McCammon JA (1996). Int J Quant Chem 60:1143

    Article  CAS  Google Scholar 

  114. Ischtwan J, Collins MA (1994). J Chem Phys 100:8080

    Article  CAS  Google Scholar 

  115. Kim Y, Corchado JC, Villá J, Xing J, Truhlar DG (2000). J Chem Phys 112:2718

    Article  CAS  Google Scholar 

  116. Albu TV, Corchado JC, Truhlar DG (2001). J Phys Chem A 105:8465

    Article  CAS  Google Scholar 

  117. Bernardi F, Olivucci M, Robb MA (1992). J Am Chem Soc 114:1606

    Article  CAS  Google Scholar 

  118. Garavelli M, Ruggeri F, Ogliaro F, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2003). J Comp Chem 24:1357

    Article  CAS  Google Scholar 

  119. Mo YR, Gao JL (2000). J Phys Chem A 104:3012

    Article  CAS  Google Scholar 

  120. Mo YR, Gao JL (2000). J Comput Chem 21:1458

    Article  CAS  Google Scholar 

  121. Wu W, Zhong SJ, Shaik S (1998). Chemical Physics Letters 292:7

    Article  CAS  Google Scholar 

  122. Wu W, Shaik S (1999). Chemical Physics Letters 301:37

    Article  CAS  Google Scholar 

  123. Wu W, Danovich D, Shurki A, Shaik S (2000). J Phys Chem A 104:8744

    Article  CAS  Google Scholar 

  124. Wu W, Luo Y, Song LC, Shaik S (2001). Phys Chem Chem Phys 3:5459

    Article  CAS  Google Scholar 

  125. Tomasi J, Persico M (1994). Chem Rev 94:2027

    Article  CAS  Google Scholar 

  126. Song LC, Wu W, Zhang QN, Shaik S (2004). J Phys Chem A 108:6017

    Article  CAS  Google Scholar 

  127. Štrajbl M, Shurki A, Warshel A (2004). Proc Nat Acad Sci 100:14834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avital Shurki.

Additional information

Affiliated with the David R. Bloom Center for Pharmacy at the Hebrew University

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shurki, A. Valence Bond – Rebirth of the Phoenix or Relic from the Stone Age. Theor Chem Acc 116, 253–261 (2006). https://doi.org/10.1007/s00214-005-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0071-3

Keywords

Navigation