Skip to main content
Log in

Infinitesimal Lyapunov functions for singular flows

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2021

This article has been updated

Abstract

We present an extension of the notion of infinitesimal Lyapunov function to singular flows, and from this technique we deduce a characterization of partial/sectional hyperbolic sets. In absence of singularities, we can also characterize uniform hyperbolicity. These conditions can be expressed using the space derivative \(DX\) of the vector field \(X\) together with a field of infinitesimal Lyapunov functions only, and are reduced to checking that a certain symmetric operator is positive definite at the tangent space of every point of the trapping region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Alekseev, V.M.: Quasirandom dynamical systems. I. Quasirandom diffeomorphisms. Mat. Sb. (N.S.) 76(118), 72–134 (1968)

    MathSciNet  Google Scholar 

  2. Alekseev, V.M.: Quasirandom dynamical systems. II. One-dimensional nonlinear vibrations in a periodically perturbed field. Mat. Sb. (N.S.) 77(119), 545–601 (1968)

    MathSciNet  Google Scholar 

  3. Alekseev, V.M.: Quasirandom dynamical systems. III. Quasirandom vibrations of one-dimensional oscillators. Mat. Sb. (N.S.) 78(120), 3–50 (1969)

    MathSciNet  Google Scholar 

  4. Araujo, V., Castro, A., Pacifico, M.J., Pinheiro, V.: Multidimensional Rovella-like attractors. J. Differ. Equ. 251(11), 3163–3201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Araújo, V., Pacifico, M.J.: Three-dimensional flows. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 53. Springer, Heidelberg (2010) [With a foreword by Marcelo Viana]

  6. Barreira, L., Dragičević, D., Valls, C.: Lyapunov functions and cone families. J. Stat. Phys. 148(1), 137–163 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonatti, C., Díaz, L.J., Viana, M.: Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective. Mathematical Physics, III. In: Encyclopaedia of Mathematical Sciences, vol. 102. Springer, Berlin (2005)

  8. Bonatti, C., Gourmelon, N., Vivier, T.: Perturbations of the derivative along periodic orbits. Ergodic Theory Dyn. Syst. 26(5), 1307–1337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. C. R. Acad. Sci. Paris Sér. I Math. 325(8), 883–888 (1997)

    Article  MATH  Google Scholar 

  10. Bonatti, C., Viana, M.: SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115, 157–193 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

  12. Bowen, R., Ruelle, D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doering, C.I.: Persistently transitive vector fields on three-dimensional manifolds. In: Proceedings on Dynamical Systems and Bifurcation Theory, vol. 160, pp. 59–89. Pitman, London (1987)

  14. Gourmelon, N.: Adapted metrics for dominated splittings. Ergodic Theory Dyn. Syst. 27(6), 1839–1849 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. In: Lecture Notes in Mathematics, vol. 583. Springer, New York (1977)

  16. Hunt, T.J., MacKay, R.S.: Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Nonlinearity 16(4), 1499 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katok, A.: Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems. Ergodic Theory Dyn. Syst. 14(4), 757–785 (1994) [With the collaboration of Keith Burns]

  18. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. In: Encyclopeadia Applied Mathematics, vol. 54. Cambridge University Press, Cambridge (1995)

  19. Lewowicz, J.: Lyapunov functions and topological stability. J. Differ. Equ. 38(2), 192–209 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewowicz, J.: Expansive homeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.) 20(1), 113–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, M., Gan, S., Wen, L.: Robustly transitive singular sets via approach of an extended linear Poincaré flow. Discret. Contin. Dyn. Syst. 13(2), 239–269 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  23. Mal\(^{\prime }\)cev, A.I.: Foundations of linear algebra. In: Roberts, J.B. (ed.) Translated from the Russian by Thomas Craig Brown. W.H. Freeman & Co., San Francisco, Calif.-London (1963)

  24. Mañé, R.: An ergodic closing lemma. Ann. Math. 116, 503–540 (1982)

    Article  MATH  Google Scholar 

  25. Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118(1), 87–97 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Metzger, R., Morales, C.: Sectional-hyperbolic systems. Ergodic Theory Dyn. Syst. 28, 1587–1597 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metzger, R.J., Morales, C.A.: The Rovella attractor is a homoclinic class. Bull. Braz. Math. Soc. 37(1), 89–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morales, C.A.: Examples of singular-hyperbolic attracting sets. Dyn. Syst. Int. J. 22(3), 339–349 (2007)

    Article  MATH  Google Scholar 

  29. Morales, C.A., Pacifico, M.J., Pujals, E.R.: Singular hyperbolic systems. Proc. Am. Math. Soc. 127(11), 3393–3401 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Morales, C.A., Pacifico, M.J., Pujals, E.R.: Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers. Ann. Math. (2) 160(2), 375–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newhouse, S.: Cone-fields, domination, and hyperbolicity. In: Modern Dynamical Systems and Applications, pp. 419–432. Cambridge University Press, Cambridge (2004)

  32. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  33. Postnikov, M.: Linear Algebra and Differential Geometry. Mir Publishers, Moscow (1983)

    Google Scholar 

  34. Potapov, V.P.: The multiplicative structure of \(J\)-contractive matrix functions. Am. Math. Soc. Transl. (2), 15, 131–243 (1960) [Translation of Trudy Moskovskogo Matematičeskogo Obščestva 4, 125–236 (1955)]

  35. Potapov, V.P.: Linear-fractional transformations of matrices. In: Studies in the Theory of Operators and Their Applications (Russian), pp. 75–97, 177. Naukova Dumka, Kiev (1979)

  36. Robinson, C.: Dynamical systems. In: Stability, symbolic dynamics, and chaos. Studies in Advanced Mathematics, 2nd edn. CRC Press, Boca Raton (1999)

  37. Robinson, C.: An Introduction to Dynamical Systems: Continuous and Discrete. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  38. Rovella, A.: The dynamics of perturbations of the contracting Lorenz attractor. Bull. Braz. Math. Soc. 24(2), 233–259 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Salgado, L.: Sobre hiperbolicidade fraca para fluxos singulares. PhD thesis, UFRJ, Rio de Janeiro (2012)

  40. Shafarevich, I., Remizov, A.: Linear Algebra And Geometry, 1st edn. Springer, Heidelberg (2013)

    Book  Google Scholar 

  41. Shub, M.: Global Stability of Dynamical Systems. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  42. Sinai, Y.: Markov partitions and C-diffeomorphisms. Func. Anal. Appl. 2, 64–89 (1968)

    Article  MathSciNet  Google Scholar 

  43. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. Strogatz, S.: Studies in nonlinearity. In: Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry and Engineering, 1st edn. Perseus Books, Reading, Massachusetts (1994)

  45. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Série I 328, 1197–1202 (1999)

  46. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Viana, M.: What’s new on Lorenz strange attractor. Math.l Intell. 22(3), 6–19 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vivier, T.: Flots robustement transitifs sur les variétés compactes. C. R. Math. Acad. Sci. Paris 337(12), 791–796 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergodic Theory Dyn. Syst. 5(1), 145–161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wojtkowski, M.P.: Magnetic flows and Gaussian thermostats on manifolds of negative curvature. Fund. Math. 163(2), 177–191 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Wojtkowski, M.P.: \(W\)-flows on Weyl manifolds and Gaussian thermostats. J. Math. Pures Appl. (9) 79(10), 953–974 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wojtkowski, M.P.: Monotonicity, \(J\)-algebra of Potapov and Lyapunov exponents. In: Smooth Ergodic Theory and its Applications (Seattle, WA, 1999). Proceedings of Symposia Pure Mathematics, vol. 69, pp. 499–521. American Mathematical Society, Providence (2001)

  53. Wojtkowski, M.P.: A simple proof of polar decomposition in pseudo-Euclidean geometry. Fund. Math. 206, 299–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhu, S., Gan, S., Wen, L.: Indices of singularities of robustly transitive sets. Discret. Contin. Dyn. Syst. 21(3), 945–957 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This is part of the second author PhD Thesis [39] at Instituto de Matemática da Universidade Federal do Rio de Janeiro (UFRJ), whose research facilities were most useful. This work have been improved during her postdoctoral research at IMPA with financial support of INCTMat-CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Araujo.

Additional information

V.A. was partially supported by CAPES, CNPq, PRONEX-Dyn.Syst. and FAPERJ (Brazil). L.S. was supported by a CNPq doctoral scholarship and is presently supported by a INCTMat-CAPES post-doctoral scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araujo, V., Salgado, L. Infinitesimal Lyapunov functions for singular flows. Math. Z. 275, 863–897 (2013). https://doi.org/10.1007/s00209-013-1163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1163-8

Keywords

Mathematics Subject Classification (2000)

Navigation