Skip to main content
Log in

Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let H be a reductive subgroup of a reductive group G over an algebraically closed field k. We consider the action of H on G n, the n-fold Cartesian product of G with itself, by simultaneous conjugation. We give a purely algebraic characterization of the closed H-orbits in G n, generalizing work of Richardson which treats the case H = G. This characterization turns out to be a natural generalization of Serre’s notion of G-complete reducibility. This concept appears to be new, even in characteristic zero. We discuss how to extend some key results on G-complete reducibility in this framework. We also consider some rationality questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardsley P., Richardson R.W.: Etale slices for algebraic transformation groups in characteristic p. Proc. Lond. Math. Soc. (3) 51(2), 295–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bate M., Martin B., Röhrle G.: A geometric approach to complete reducibility. Invent. Math. 161(1), 177–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bate M., Martin B., Röhrle G.: Complete reducibility and commuting subgroups. J. Reine Angew. Math. 621, 213–235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bate M., Martin B., Röhrle G.: Complete reducibility and separable field extensions. C. R. Math. Acad. Sci. Paris 348, 495–497 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Bate M., Martin B., Röhrle G., Tange R.: Complete reducibility and separability. Trans. Am. Math. Soc. 362(8), 4283–4311 (2010)

    Article  MATH  Google Scholar 

  6. Bate M., Martin B., Röhrle, G., Tange, R.: Closed orbits and uniform S-instability in geometric invariant theory. Preprint. arXiv:0904.4853v3 [math.AG] (2009)

  7. Borel, A.: Linear algebraic groups. In: Graduate Texts in Mathematics, vol. 126. Springer-Verlag, New York (1991)

  8. Borel A., Tits J.: Eléments unipotents et sous-groupes paraboliques des groupes réductifs, I. Invent. Math. 12, 95–104 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hesselink W.H.: Uniform instability in reductive groups. J. Reine Angew. Math. 303/304, 74–96 (1978)

    Article  MathSciNet  Google Scholar 

  10. Kempf G.R.: Instability in invariant theory. Ann. Math. 108, 299–316 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kraft, H.: Geometric methods in representation theory. In: Representations of Algebras (Puebla, 1980), pp. 180–258. Lecture Notes in Math., vol. 944. Springer, Berlin (1982)

  12. Kraft, H.: Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig (1984)

  13. Liebeck, M.W., Seitz, G.M.: Reductive subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. 580 (1996)

  14. Liebeck M.W., Seitz G. M: Variations on a theme of Steinberg. Special issue celebrating the 80th birthday of Robert Steinberg. J. Algebra 260(1), 261–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liebeck M.W., Testerman D.M.: Irreducible subgroups of algebraic groups. Q. J. Math. 55, 47–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Martin B.: Reductive subgroups of reductive groups in nonzero characteristic. J. Algebra 262(2), 265–286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martin B.: A normal subgroup of a strongly reductive subgroup is strongly reductive. J. Algebra 265(2), 669–674 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. McNinch G.: Completely reducible Lie subalgebras. Transform. Groups 12(1), 127–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer-Verlag, Berlin (1994)

  20. Newstead, P.E.: Introduction to Moduli Problems and Orbit Spaces. Published for the Tata Institute of Fundamental Research, Bombay. Springer-Verlag, Berlin (1978)

  21. Richardson R.W.: On orbits of algebraic groups and Lie groups. Bull. Austral. Math. Soc. 25(1), 1–28 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richardson R.W.: Conjugacy classes of n-tuples in Lie algebras and algebraic groups. Duke Math. J. 57(1), 1–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seitz G.M.: Abstract homomorphisms of algebraic groups. J. Lond. Math. Soc. (2) 56(1), 104–124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serre J.-P.: Semisimplicity and tensor products of group representations: converse theorems. With an appendix by Walter Feit. J. Algebra 194(2), 496–520 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Serre, J.-P.: La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs. Séminaire au Collège de France, résumé dans [29, pp. 93–98] (1997)

  26. Serre, J.-P.: The notion of complete reducibility in group theory. In: Moursund Lectures, Part II. University of Oregon. arXiv:math/0305257v1 [math.GR] (1998)

  27. Serre, J.-P.: Complète réductibilité. Séminaire Bourbaki, 56ème année, no. 932 (2003–2004)

  28. Springer, T.A.: Linear algebraic groups, 2nd edn. In: Progress in Mathematics, vol. 9. Birkhäuser Boston, Inc., Boston (1998)

  29. Springer, T.A.: Théorie des groupes. Résumé des Cours et Travaux, Annuaire du Collège de France, 97e année, pp. 89–102 (1996–1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Röhrle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bate, M., Martin, B., Röhrle, G. et al. Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras. Math. Z. 269, 809–832 (2011). https://doi.org/10.1007/s00209-010-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0763-9

Keywords

Mathematics Subject Classification (2000)

Navigation