Skip to main content
Log in

The Dirichlet and the weighted metrics for the space of Kähler metrics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

In this work we study the intrinsic geometry of the space of Kähler metrics under various Riemannian metrics and the corresponding variational structures. The first part is on the Dirichlet metric. A motivation for the study of this metric comes from Chen and Zheng (J Reine Angew Math, 674:195–251, 2013); there, Chen and the second author showed that the pseudo-Calabi flow is the gradient flow of the \(K\)-energy when \(\mathcal {H}\) is endowed precisely with the Dirichlet metric. The second part is on the family of weighted metrics, whose distinguished element is the Calabi metric studied in Calamai (Math Ann 353:373–402, 2012). We investigate as well their geometric properties. Then we focus on the constant weight metric. We use it to give an alternative proof of Calabi’s uniqueness of the Kähler–Einstein metrics (cf. Theorem 5.9), when \(C_1\le 0\). We also introduce a new functional called \(G\)-functional and we prove that its gradient flow has long time existence and also converges to the Kähler–Einstein metric when \(C_1\le 0\) (cf. Theorem 5.10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arezzo, C., Tian, G.: Infinite geodesic rays in the space of Kähler potentials (English summary)

  2. Calabi, E.: Extremal Kähler metrics. II. Differential geometry and complex analysis, pp. 95–114. Springer, Berlin (1985)

  3. Calabi, E.: On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology. In: A Symposium in Honor of S. Lefschetz, pp. 78–89. Princeton University Press, Princeton (1957)

  4. Calabi, E.: The variation of Kähler metrics. I. The structure of the space. II. A minimum problem. Bull. Am. Math. Soc. 60, 167–168 (1954)

    Google Scholar 

  5. Calabi, E., Chen, X.X.: The space of Kähler metrics. II. J. Differ. Geom. 61(2), 173–193 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Calamai, S.: The Calabi metric for the space of Kähler metrics. Math. Ann. 353, 373–402 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Calamai, S., Zheng, K.: Geodesics in the space of Kähler cone metrics. http://arxiv.org/abs/1205.0056

  8. Cao, H.D.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X.X.: On the lower bound of the Mabuchi energy and its application. Int. Math. Res. Not. 12, 607–623 (2000)

    Article  Google Scholar 

  10. Chen, X.X.: The space of Kähler metrics. J. Differ. Geom. 56(2), 189–234 (2000)

    MATH  Google Scholar 

  11. Chen, X.X.: Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453–503 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X.X.: Space of Kähler metrics (IV)—on the lower bound of the K-energy. arXiv:0809.4081

  13. Chen, X.X., Zheng, K.: The pseudo-Calabi flow. J. Reine Angew. Math. 674, 195–251 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, pp. 13–33. American Mathematical Society Translations (2), vol. 196. American Mathematical Society, Providence (1999)

  15. Ebin, D.G.: The manifold of Riemannian metrics. In: Chern et al. (eds.) Global analysis. Proceedings of Symposia in Pure and Applied Mathematics, pp. 11–40 (1970)

  16. Mabuchi, T.: \(K\)-energy maps integrating Futaki invariants. Tohoku Math. J. 38, 575–593 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds. Osaka J. Math. 24, 227–252 (1987)

    MATH  MathSciNet  Google Scholar 

  18. Semmes, S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math. 114, 495–550 (1999)

    Article  MathSciNet  Google Scholar 

  19. Tian, G.: Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. In: Lectures in Mathematics ETH Zrich, pp. vi+101. Birkhuser Verlag, Basel (2000)

  20. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deepest gratitude to Professor Claudio Arezzo and Professor Xiuxiong Chen for helpful discussion on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng.

Additional information

S. Calamai is supported by GNSAGA of INdAM, and by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica”. K. Zheng author is partially supported by ANR project “Flots et Opérateurs Géométriques” (ANR-07-BLAN-0251-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calamai, S., Zheng, K. The Dirichlet and the weighted metrics for the space of Kähler metrics. Math. Ann. 363, 817–856 (2015). https://doi.org/10.1007/s00208-015-1188-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1188-x

Mathematics Subject Classification

Navigation