Skip to main content
Log in

The Birkhoff integral and the property of Bourgain

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract.

In this paper we study the Birkhoff integral of functions f:Ω→X defined on a complete probability space (Ω,Σ,μ) with values in a Banach space X. We prove that if f is bounded then its Birkhoff integrability is equivalent to the fact that the set of compositions of f with elements of the dual unit ball Z f ={〈x*,f〉:x* ∈ B X* } has the Bourgain property. A non necessarily bounded function f is shown to be Birkhoff integrable if, and only if, Z f is uniformly integrable and has the Bourgain property. As a consequence it turns out that the range of the indefinite integral of a Birkhoff integrable function is relatively norm compact. We characterize the weak Radon-Nikodým property in dual Banach spaces via Birkhoff integrable Radon-Nikodým derivatives. We also point out that a recently introduced notion of unconditional Riemann-Lebesgue integrability coincides with the notion of Birkhoff integrability. Some other applications are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Am. Math. Soc. 38(2), 357–378 (1935) MR 1 501 815

    MATH  Google Scholar 

  2. Diestel, J., Uhl, J.J., Jr.: Vector measures. American Mathematical Society, Providence, R.I., 1977, With a foreword by B. J. Pettis, Mathematical Surveys, No. 15. MR 56 #12216

  3. van Dulst, D.: Characterizations of Banach spaces not containing l1. CWI Tract, vol. 59, Centrum voor Wiskunde en Informatica, Amsterdam, 1989 MR 90h:46037

  4. Fréchet, M.: Sur l’intégrale d’une fonctionnelle étendue à un ensemble abstrait. Bull. Soc. Math. France 43, 248–265 (1915)

    Google Scholar 

  5. Fremlin, D.H.: The McShane and Birkhoff integrals of vector-valued functions. University of Essex Mathematics Department Research Report 92-10 1999. Available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

  6. Fremlin, D.H., Mendoza, J.: On the integration of vector-valued functions. Illinois J. Math. 38(1), 127–147 (1994) MR 94k:46083

    MATH  Google Scholar 

  7. Ghoussoub, N., Godefroy, G., Maurey, B., Schachermayer, W.: Some topological and geometrical structures in Banach spaces. Mem. Am. Math. Soc. 70(378), iv+116 (1987) MR 89h:46024

    Google Scholar 

  8. Hewitt, E., Stromberg, K.: Real and abstract analysis. Springer-Verlag, New York, 1975. A modern treatment of the theory of functions of a real variable, Third printing, Graduate Texts in Mathematics, No. 25. MR 51 #3363

  9. Kadets, V., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K.: Some remarks on vector-valued integration. Mat. Fiz. Anal. Geom. 9(1), 48–65 (2002) MR 2003g:28026

    Google Scholar 

  10. Kadets, V.M., Tseytlin, L.M.: On “integration” of non-integrable vector-valued functions. Mat. Fiz. Anal. Geom. 7(1), 49–65 (2000) MR 2001e:28017

    MATH  Google Scholar 

  11. Musiał, K.: The weak Radon-Nikodým property in Banach spaces. Studia Math 64(2), 151–173 (1979) MR 80h:46065

    Google Scholar 

  12. Musiał, K.: Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23(1991)(1), 177–262 (1993), School on Measure Theory and Real Analysis (Grado, 1991) MR 94k:46084

    Google Scholar 

  13. Musiał, K.: A few remarks concerning the strong law of large numbers for non-separable Banach space valued functions. Rend. Istit. Mat. Univ. Trieste 26(1994) suppl., 221–242 (1995), Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1993) MR 97f:60016

  14. Pettis, B.J.: On integration in vector spaces. Trans. Am. Math. Soc. 44(2), 277–304 (1938) MR 1 501 970

    MATH  Google Scholar 

  15. Phillips, R.S.: Integration in a convex linear topological space. Trans. Am. Math. Soc. 47, 114–145 (1940) MR 2,103c

    MathSciNet  MATH  Google Scholar 

  16. Riddle, L.H., Saab, E.: On functions that are universally Pettis integrable. Illinois J. Math. 29(3), 509–531 (1985) MR 86i:28012

    MATH  Google Scholar 

  17. Rudin, W.: Real and complex analysis. second ed., McGraw-Hill Book Co., New York, 1974, McGraw-Hill Series in Higher Mathematics MR 49 #8783

  18. Saab, E.: On the weak*-Radon Nikodým property. Bull. Austral. Math. Soc. 37(3), 323–332 (1988) MR 89f:46040

    MATH  Google Scholar 

  19. Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 51(307), ix+224 (1984) MR 86j:46042

    Google Scholar 

  20. Talagrand, M.: The Glivenko-Cantelli problem. Ann. Probab. 15(3), 837–870 (1987) MR 88h:60012

    MATH  Google Scholar 

  21. Vera, G.: Pointwise compactness and continuity of the integral. Rev. Mat. Univ. Complut. Madrid 9, Special Issue, suppl., 221–245 (1996), Meeting on Mathematical Analysis (Spanish) (Avila, 1995) MR 97k:28010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cascales.

Additional information

Mathematics Subject Classification (2000): 28B05, 46B22, 46G10

Partially supported by the research grant BFM2002-01719 of MCyT (Spain). The second author was supported by a FPU grant of MECD (Spain).

Acknowledgement We gratefully thank Gabriel Vera for lively discussions about some material considered in this paper. We also thank the referee for helpful suggestions that have improved the exposition of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascales, B., Rodríguez, J. The Birkhoff integral and the property of Bourgain. Math. Ann. 331, 259–279 (2005). https://doi.org/10.1007/s00208-004-0581-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-004-0581-7

Keywords

Navigation