Skip to main content
Log in

Osgood’s Lemma and Some Results for the Slightly Supercritical 2D Euler Equations for Incompressible Flow

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate the (slightly) super-critical two-dimensional Euler equations. The paper consists of two parts. In the first part we prove well-posedness in C s spaces for all s > 0. We also give growth estimates for the C s norms of the vorticity for \({0 < s \leqq 1}\). In the second part we prove global regularity for the vortex patch problem in the super-critical regime. This paper extends the results of Chae et al. where they prove well-posedness for the so-called LogLog-Euler equation. We also extend the classical results of Chemin and Bertozzi–Constantin on the vortex patch problem to the slightly supercritical case. Both problems we study in the setting of the whole space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H., Chemin J.-Y.: Équations de transport relatives á des champs de veceurs non-lipschitziens et mécanique des fluides. Arch. Ration. Mech. Anal. 127(2), 159–181 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Springer, Berlin, p 434, 2011

  3. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3D Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bertozzi A., Constantin P.: Global regularity for vortex patches. Commun. Math. Phys. 152(1), 19–28 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Caffarelli L., Vasseur A.: Drift diffusion with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chae D., Constantin P., Wu J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations. Arch. Ration. Mech. Anal. 202(1), 35–62 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chemin J.-Y.: Persistance de structures geometriques dans les fluides incompressibles bidimensionnels. Annales de l’École Normale Supérieure 26(4), 1–26 (1993)

    MathSciNet  Google Scholar 

  8. Constantin P., Lax P., Majda A.: A simple one-dimensional model for the three dimensional vorticity. Commun. Pure Appl. Math. 38, 715–724 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Constantin P., Vicol V.: Nonlinear maximum principles for dissipative linear nonlocal operators and applications (arXiv:1110,0179v1 [math.AP])

  10. Córodba A., Córodba D., Fontelo M.A.: Formation of singularities for a transport equation iwth nonlocal velocity. Ann. Math. 162(2), 1377–1389 (2005)

    Article  Google Scholar 

  11. Dabkowski M., Kiselev A., Silvestre L., Vicol V.: On the global well-posedness of slightly supercritical dissipative active scalar equations and inviscid models with singular drift velocity (in preparation)

  12. Dabkowski M., Kiselev A., Vicol V.: Global well-posedness for a slightly supercritical surface quasi-geostrophic equation (arXiv:1106.2137v2 [math.AP])

  13. Dong H., Du D., Li D.: Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ. Math. J. 58(2), 807–821 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kelliher J.P.: On the flow map for the 2D Euler equations with unbounded vorticity. Nonlinearity 24(9), 2599–2637 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Kiselev A., Nazarov F.: A variation on a theme of Caffarelli and Vasseur. Zap. Nauchn. Sem. POMI 370, 58–72 (2010)

    MathSciNet  Google Scholar 

  16. Kiselev A., Nazarov F., Shterenberg R.: Blow up and regularity for fractal Burgers equation. Dyn. Partial Differ. Equ. 5(3), 211–240 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Li D., Rodrigo J.: Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation. Adv. Math. 217, 2563–2568 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Maekawa Y., Miura H.: On fundamental solutions for fractional diffusion equations with divergence free drift (preprint)

  20. Taos T.: Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation. Anal. PDE 2, 361–366 (2009)

    Article  MathSciNet  Google Scholar 

  21. Vishik M.: Incompressible flows on an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. Sup. 32(6), 769–812 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Yudovich V.I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MATH  Google Scholar 

  23. Yudovich V.I.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2(1), 27–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mohamed Elgindi.

Additional information

Communicated by V. Šverák

T.M. Elgindi is partially supported by NSF Grant DMS-0807347.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elgindi, T.M. Osgood’s Lemma and Some Results for the Slightly Supercritical 2D Euler Equations for Incompressible Flow. Arch Rational Mech Anal 211, 965–990 (2014). https://doi.org/10.1007/s00205-013-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0691-z

Keywords

Navigation