Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Mouse models of intestinal inflammation and cancer

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

This article was retracted on 28 September 2018

This article has been updated

Abstract

Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn’s disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With regard to extraintestinal manifestations such as lymphoma, however, more suitable models are required to further investigate the complex and heterogeneous mechanisms that may be at play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 28 September 2018

    The original article can be found online.

References

  • Abu-Shakra M, Guillemin F, Lee P (1993) Cancer in systemic sclerosis. Arthritis Rheum 36(4):460–464

    CAS  PubMed  Google Scholar 

  • Abu-Shakra M, Gladman D, Urowitz M (1996) Malignancy in systemic lupus erythematosus. Arthritis Rheum 39(6):1050–1054

    CAS  PubMed  Google Scholar 

  • Abu-Shakra M et al (2001) Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies. Ann Rheum Dis 60(5):433–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alex P, Zachos NC, Nguyen T, Gonzales L, Chen TE, Conklin LS, Centola M, Li X (2009) Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15(3):341–352

    PubMed  Google Scholar 

  • Altindag O et al (2007) Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem 40(3–4):167–171

    CAS  PubMed  Google Scholar 

  • American Cancer Society (2008) Cancer facts and figures 2008. American Cancer Society, Atlanta

    Google Scholar 

  • Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci 92(12):5258–5265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amos-Landgraf J, Kwong L, Kendziorski C, Reichelderfer M, Torrealba J, Weichert J, Haag J, Chen K, Waller J, Gould M (2007) A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci USA 104:4036–4041

    CAS  PubMed  PubMed Central  Google Scholar 

  • An G et al (2007) Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med 204(6):1417–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda R et al (1997) Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 158(7):3464–3473

    CAS  PubMed  Google Scholar 

  • Arita M et al (2005) Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci 102(21):7671–7676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atreya R, Mudter J, Finotto S, Müllberg J, Jostock T, Wirtz S, Schütz M, Bartsch B, Holtmann M, Becker C (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat Med 6(5):583–588

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    CAS  PubMed  Google Scholar 

  • Baribault H et al (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev 8(24):2964–2973

    CAS  PubMed  Google Scholar 

  • Barrett J et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beatty PL et al (2007) Cutting edge: transgenic expression of human MUC1 in IL-10−/− mice accelerates inflammatory bowel disease and progression to colon cancer. J Immunol 179(2):735–739

    CAS  PubMed  Google Scholar 

  • Bensinger SJ et al (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134(1):97–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bettelli E et al (2004) Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med 200(1):79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibiloni R et al (2006) The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol 55(8):1141–1149

    PubMed  Google Scholar 

  • Black KE, Murray JA, David CS (2002) HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol 169:5595–600

    CAS  PubMed  Google Scholar 

  • Boirivant M et al (1998) Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 188(10):1929–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DL et al (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5(10):1052–1060

    CAS  PubMed  Google Scholar 

  • Brandwein S et al (1997) Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol 159(1):44–52

    CAS  PubMed  Google Scholar 

  • Brimnes J et al (2001) Enteric bacterial antigens activate CD4+ T cells from scid mice with inflammatory bowel disease. Eur J Immunol 31(1):23–31

    CAS  PubMed  Google Scholar 

  • Brimnes J et al (2005) Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 174(9):5814–5822

    CAS  PubMed  Google Scholar 

  • Camoglio L et al (2000) Hapten-induced colitis associated with maintained Th1 and inflammatory responses in IFN-receptor-deficient mice. Eur J Immunol 30(5):1486–1495

    CAS  PubMed  Google Scholar 

  • Canavan C, Abrams KR, Mayberry J (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn’s disease. Aliment Pharmacol Ther 23(8):1097–1104

    CAS  PubMed  Google Scholar 

  • Catassi C, Bearzi I, Holmes GKT (2005) Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology 128(4, Supplement 1):S79–S86

    PubMed  Google Scholar 

  • Chan RCF et al (2006) Small bowel adenocarcinoma with high levels of microsatellite instability in Crohn’s disease. Hum Pathol 37(5):631–634

    CAS  PubMed  Google Scholar 

  • Chaux P et al (1996) Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 74(5):975–984

    CAS  PubMed  Google Scholar 

  • Chu FF et al (2004) Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res 64(3):962–968

    CAS  PubMed  Google Scholar 

  • Clegg C et al (1997) Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. Int Immunol 9(8):1111–1122

    CAS  PubMed  Google Scholar 

  • Colussi C et al (2001) 1, 2-Dimethylhydrazine-induced colon carcinoma and lymphoma in msh2(−/−) mice. J Natl Cancer Inst 93(20):1534–1540

    CAS  PubMed  Google Scholar 

  • Coombes J, Maloy K (2007) Control of intestinal homeostasis by regulatory T cells and dendritic cells. Elsevier, Amsterdam

    Google Scholar 

  • Cooper HS et al (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2):238–249

    CAS  PubMed  Google Scholar 

  • Cooper HS et al (2000) Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, B-catenin and p53 expression and the role of inflammation. Carcinogenesis 21(4):757–768

    CAS  PubMed  Google Scholar 

  • Cotran RS, Kumar V, Collins T (1999) Robbins pathological basis of disease, 6th edn. WB Saunders, Philadelphia, pp 50–458

    Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Giorgi V et al (2009) In vivo characterization of the inflammatory infiltrate and apoptotic status in imiquimod-treated basal cell carcinoma. Int J Dermatol 48:312–321

    PubMed  Google Scholar 

  • de Kauwe AL et al (2009) Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol 182(12):7440–7450

    PubMed  Google Scholar 

  • De Marzo AM et al (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7(4):256–269

    PubMed  PubMed Central  Google Scholar 

  • Delaunoit T et al (2005) Pathogenesis and risk factors of small bowel adenocarcinoma: a colorectal cancer sibling? Am J Gastroenterol 100(3):703–710

    PubMed  Google Scholar 

  • D’Haens G et al (1998) Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 114(2):262–267

    PubMed  Google Scholar 

  • Dieleman LA et al (1994) Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107(6):1643–1652

    CAS  PubMed  Google Scholar 

  • Dominici F et al (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J Am Med Assoc 295(10):1127–1134

    CAS  Google Scholar 

  • Dotan I (2007) Serologic markers in inflammatory bowel disease: tools for better diagnosis and disease stratification. Expert Rev Gastroenterol Hepatol 1(2):265–274

    CAS  PubMed  Google Scholar 

  • Eckburg P, Relman DA (2007) The role of microbes in Crohn’s disease. Clin Infect Dis 44:256–262

    CAS  PubMed  Google Scholar 

  • Elder D, Paraskeva C (1999) Induced apoptosis in the prevention of colorectal cancer by non-steroidal anti-inflammatory drugs. Apoptosis 4(5):365–372

    CAS  PubMed  Google Scholar 

  • Elgbratt K et al (2007) Aberrant T-cell ontogeny and defective thymocyte and colonic T-cell chemotactic migration in colitis-prone Gai2-deficient mice. Immunology 122(2):199–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elson C et al (2005) Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev 206(1):260–276

    PubMed  Google Scholar 

  • Engle SJ et al (2002) Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 62(22):6362–6366

    CAS  PubMed  Google Scholar 

  • Erdman SE et al (2001) Cutting edge: typhlocolitis in NF-{{kappa}}B-deficient mice. J Immunol 166(3):1443–1447

    CAS  PubMed  Google Scholar 

  • Erdman SE et al (2003) CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 162(2):691–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esensten JH et al (2009) T-bet-deficient NOD mice are protected from diabetes due to defects in both T cell and innate immune system function. J Immunol 183(1):75–82

    CAS  PubMed  Google Scholar 

  • Farrell R, LaMont J (2002) Microbial factors in inflammatory bowel disease. Gastroenterol Clin North Am 31(1):41–62

    PubMed  Google Scholar 

  • Festen EA et al (2009) Inflammatory bowel disease and celiac disease: overlaps in the pathology and genetics, and their potential drug targets. Endocr Metab Immune Disord Drug Targets 9(2):199–218

    CAS  PubMed  Google Scholar 

  • Fichtner-Feigl S et al (2005) Treatment of murine Th1-and Th2-mediated inflammatory bowel disease with NF-B decoy oligonucleotides. J Clin Invest 115(11):3057–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fina D et al (2008) Interleukin 21 contributes to the mucosal T helper cell type 1 response in coeliac disease. Gut 57(7):887–892

    CAS  PubMed  Google Scholar 

  • Frank D et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci 104(34):13780–13785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funabashi H et al (2001) Establishment of a Tcrb and Trp53 genes deficient mouse strain as an animal model for spontaneous colorectal cancer. Exp Anim 50(1):41–47

    CAS  PubMed  Google Scholar 

  • Garlanda C et al (2004) Intestinal inflammation in mice deficient in Tir8, an inhibitory member of the IL-1 receptor family. Proc Natl Acad Sci USA 101(10):3522–3526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett WS et al (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131(1):33–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett WS et al (2009) Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16(3):208–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelik L, Flavell RA (2000) Abrogation of TGF[beta] signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12(2):171–181

    CAS  PubMed  Google Scholar 

  • Green PHR, Jabri B (2003a) Celiac disease and other precursors to small-bowel malignancy. Hematol Oncol Clin North Am 17(2):611–624

    Google Scholar 

  • Green PHR, Jabri B (2003b) Coeliac disease. Lancet 362(9381):383–391

    CAS  PubMed  Google Scholar 

  • Greenstein AJ et al (1985) Extraintestinal cancers in inflammatory bowel disease. Cancer 56(12):2914–2921

    CAS  PubMed  Google Scholar 

  • Gryfe R, Kim H, Hsieh ETK, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342:69–77

    CAS  PubMed  Google Scholar 

  • Guldenschuh I, Hurlimann R, Muller A, Ammann R, Mullhaupt B, Dobbie Z, Zala G, Flury R, Seelentag W, Roth J (2001) Relationship between APC genotype, polyp distribution, and oral sulindac treatment in the colon and rectum of patients with familial adenomatous polyposis. Dis Colon Rectum 44:1090–1097

    CAS  PubMed  Google Scholar 

  • Hanada T et al (2006) IFN{gamma}-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203(6):1391–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht S (1997) Tobacco and cancer: approaches using carcinogen biomarkers and chemoprevention. Ann N Y Acad Sci 833(1 Cancer: Genetics and the Environment): 91–111

  • Heller F et al (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17(5):629–638

    CAS  PubMed  Google Scholar 

  • Heller F et al (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564

    CAS  PubMed  Google Scholar 

  • Hermiston M, Gordon J (1995) Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270(5239):1203–1237

    CAS  PubMed  Google Scholar 

  • Hoffmann J, Pawlowski N, Kühl A, Höhne W, Zeitz M (2000) Animal models of inflammatory bowel disease: an overview. Pathobiology 70:121–130

    Google Scholar 

  • Hollander GA, Simpson SJ, Mizoguchi E, Nichogiannopoulou A, She J, Gutierrez-Ramos JC, Bhan AK, Burakoff SJ, Wang B, Terhorst C (1995) Severe colitis in mice with aberrant thymic selection. Immunity 3(1):27–38

    CAS  PubMed  Google Scholar 

  • Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B (2008) The role of HLA-DQ8 β57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 456:534–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TT et al (2003) TCR-mediated hyper-responsiveness of autoimmune Galphai2(−/−) mice is an intrinsic naive CD4(+) T cell disorder selective for the Galphai2 subunit. Int Immunol 15(11):1359–1367

    CAS  PubMed  Google Scholar 

  • Hugot J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411(6837):599–603

    CAS  PubMed  Google Scholar 

  • Iijima H et al (2004) Specific regulation of T helper cell 1—mediated murine colitis by CEACAM1. J Exp Med 199(4):471–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Oliver J, Wagner F, Lazenby A, Elson C, Weaver C (2002) T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J Exp Med 195(1):71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Issa J et al (2001) Accelerated age-related CpG Island methylation in ulcerative colitis 1. Cancer Res 61(9):3573–3577

    CAS  PubMed  Google Scholar 

  • Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287(1):G7–G17

    CAS  PubMed  Google Scholar 

  • Jess T et al (2005) Increased risk of intestinal cancer in Crohn’s disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol 100(12):2724–2729

    PubMed  Google Scholar 

  • Kado S et al (2001) Intestinal microflora are necessary for development of spontaneous adenocarcinoma of the large intestine in T-cell receptor beta chain and p53 double-knockout mice. Cancer Res 61(6):2395–2398

    CAS  PubMed  Google Scholar 

  • Kakazu T et al (1999) Type 1 T-helper cell predominance in granulomas of Crohn’s disease. Am J Gastroenterol 94(8):2149–2155

    CAS  PubMed  Google Scholar 

  • Kanagarajan N et al (2008) Disease modifying effect of statins in dextran sulfate sodium model of mouse colitis. Inflamm Res 57(1):34–38

    CAS  PubMed  Google Scholar 

  • Kang S et al (2008) An antibiotic-responsive mouse model of fulminant ulcerative colitis. PLoS Med 5(3):e41

    PubMed  PubMed Central  Google Scholar 

  • Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kastenbauer S, Ziegler-Heitbrock H (1999) NF-kappaB1 (p50) is upregulated in lipopolysaccharide tolerance and can block tumor necrosis factor gene expression. Infect Immun 67(4):1553–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M et al (2003) Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J Clin Invest 111(9):1297–1308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi KS et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734

    CAS  PubMed  Google Scholar 

  • Kohno H, Suzuki R, Sugie S, Tanaka T (2005) Beta-Catenin mutations in a mouse model of inflammation-related colon carcinogenesis induced by 1,2-dimethylhydrazine and dextran sodium sulfate. Cancer Sci 96(2):69–76

    CAS  PubMed  Google Scholar 

  • Kontoyiannis D et al (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    CAS  PubMed  Google Scholar 

  • Kruis W et al (2004) Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53(11):1617–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kühn R et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    PubMed  Google Scholar 

  • Kühnel D, Taugner F, Scholtka B, Steinberg P (2009) Inflammation does not precede or accompany the induction of preneoplastic lesions in the colon of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine-fed rats. Arch Toxicol 83:763–768

    PubMed  Google Scholar 

  • Kulkarni AB et al (1995) Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol 146(1):264–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kullberg M, Andersen J, Gorelick P, Caspar P, Suerbaum S, Fox J, Cheever A, Jankovic D, Sher A (2003) Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc Natl Acad Sci USA 100(26):15830–15835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248:171–183

    CAS  PubMed  Google Scholar 

  • Laden F et al (2007) Cause-specific mortality in the unionized US trucking industry. Environ Health Perspect 115(8):1192

    PubMed  PubMed Central  Google Scholar 

  • Laubitz D et al (2008) Colonic gene expression profile in NHE3-deficient mice: evidence for spontaneous distal colitis. Am J Physiol Gastrointest Liver Physiol 295(1):G63–G77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus MN et al (2006) Incidence of cancer in a cohort of patients with primary Sjogren’s syndrome. Rheumatology 45(8):1012–1015

    CAS  PubMed  Google Scholar 

  • Lee EG et al (2000) Failure to regulate TNF-induced NF-kappa B and cell death responses in A20-deficient mice. Science 289(5488):2350–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-H et al (2003) Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol 170(4):2214–2220

    CAS  PubMed  Google Scholar 

  • Leeds JS et al (2007) Is there an association between coeliac disease and inflammatory bowel diseases? A study of relative prevalence in comparison with population controls. Scand J Gastroenterol 42(10):1214–1220

    PubMed  Google Scholar 

  • Liao J et al (2008) Increased susceptibility of chronic ulcerative colitis-induced carcinoma development in DNA repair enzyme Ogg1 deficient mice J. Liao and DN Seril contributed equally to this study. Mol Carcinog 47(8):638–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prisciandaro L et al (2009) Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflamm Bowel Dis 15(12):1906–1914

    PubMed  Google Scholar 

  • Mahmud S, Franco E, Aprikian A (2004) Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and **meta-analysis. Br J Cancer. 90(1):93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchesi J et al (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6(2):546–551

    CAS  PubMed  Google Scholar 

  • Marine JC et al (1999) SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98:609–616

    CAS  PubMed  Google Scholar 

  • Mashimo H et al (1996) Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274(5285):262–265

    CAS  PubMed  Google Scholar 

  • Matsumoto S et al (1998) Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse P1/Yit strain. Gut 43(1):71–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matteson E et al (1991) Occurrence of neoplasia in patients with rheumatoid arthritis enrolled in a DMARD Registry. Rheumatoid Arthritis Azathioprine Registry Steering Committee. J Rheumatol 18(6):809–814

    CAS  PubMed  Google Scholar 

  • McCafferty D-M et al (2000) Spontaneously developing chronic colitis in IL-10/iNOS double-deficient mice. Am J Physiol Gastrointest Liver Physiol 279(1):G90–G99

    CAS  PubMed  Google Scholar 

  • McGhee JR et al (1998) Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 66(11):5224–5231

    Google Scholar 

  • McGovern D, Powrie F (2007) The IL23 axis plays a key role in the pathogenesis of IBD. Gut 56(10):1333

    CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson M et al (2008) Colitis immunoregulation by CD8+ T cell requires T cell cytotoxicity and B cell peptide antigen presentation. Am J Physiol Gastrointest Liver Physiol 295(3):G485–G492. doi:10.1152/ajpgi.90221.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meira LB et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118(7):2516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt MA et al (2008) Talcum powder, chronic pelvic inflammation and NSAIDs in relation to risk of epithelial ovarian cancer. Int J Cancer 122(1):170–176

    CAS  PubMed  Google Scholar 

  • Mizoguchi A, Mizoguchi E, Bhan A (1999) The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice. Gastroenterology 116(2):320–326

    CAS  PubMed  Google Scholar 

  • Mombaerts P et al (1993) Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75(2):274–282

    CAS  PubMed  Google Scholar 

  • Monteleone G et al (2001) Blocking Smad7 restores TGF- 1 signaling in chronic inflammatory bowel disease. J Clin Invest 108(4):601–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori H et al (1984) Absence of genotoxicity of the carcinogenic sulfated polysaccharides carrageenan and dextran sulfate in mammalian DNA repair and bacterial mutagenicity assays. Nutr Cancer 6(2):92–97

    CAS  PubMed  Google Scholar 

  • Morrissey P et al (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 178(1):237–244

    CAS  PubMed  Google Scholar 

  • Moser A, Pitot H, Dove W (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322–324

    CAS  PubMed  Google Scholar 

  • Munkholm P et al (1994) Intestinal permeability in patients with Crohn’s disease and ulcerative colitis and their first degree relatives. Gut 35(1):68–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mylonaki M et al (2005) Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 11(5):481–487

    PubMed  Google Scholar 

  • Nemetz N et al (2008) Induction of colitis and rapid development of colorectal tumors in mice deficient in the neuropeptide PACAP. Int J Cancer 122(8):1803–1809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nenci A et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446(7135):557–561

    CAS  PubMed  Google Scholar 

  • Neurath MF et al (1996) Effects of IL-12 and antibodies to IL-12 on established granulomatous colitis in mice. Ann N Y Acad Sci 795(Interleukin 12 Cellular and Molecular Immunology of an Important Regulatory Cytokine):368–370

    CAS  PubMed  Google Scholar 

  • Neurath MF et al (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 195(9):1129–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor W Jr et al (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10(6):603–609

    PubMed  PubMed Central  Google Scholar 

  • Ohman L et al (2000) Immune activation in the intestinal mucosa before the onset of colitis in Galphai2-deficient mice. Scand J Immunol 52(1):80–90

    CAS  PubMed  Google Scholar 

  • Okayasu I et al (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98(3):694–702

    CAS  PubMed  Google Scholar 

  • Okuda Y et al (2003) Development of colitis in signal transducers and activators of transcription 6-deficient T-cell receptor -deficient mice a potential role of signal transducers and activators of transcription 6-independent interleukin-4 signaling for the generation of Th2-biased pathological CD4+ T Cells. Am J Pathol 162(1):263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan JN et al (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32(2):280–284

    PubMed  Google Scholar 

  • Panwala CM, Jones JC, Viney JL (1998) A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 161(10):5733–5744

    CAS  PubMed  Google Scholar 

  • Park JW et al (2009) Restoration of T-box-containing protein expressed in T cells protects against allergen-induced asthma. J Allergy Clin Immunol 123(2):479–485

    CAS  PubMed  Google Scholar 

  • Parke D, Sapota A (1996) Chemical toxicity and reactive oxygen species. Int J Occup Med Environ Health 9:331–340

    CAS  PubMed  Google Scholar 

  • Peebles K et al (2007) Inflammation and lung carcinogenesis: applying findings in prevention and treatment. Expert Rev Anticancer Ther 7(10):1405–1421

    CAS  PubMed  Google Scholar 

  • Peltekova V et al (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36(5):471–475

    CAS  PubMed  Google Scholar 

  • Popivanova BK et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118(2):560–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter D et al (2004) The role of defective mismatch repair in small bowel adenocarcinoma in celiac disease. Cancer Res 64(19):7073–7077

    CAS  PubMed  Google Scholar 

  • Powrie F et al (1993) Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 5(11):1461–1471

    CAS  PubMed  Google Scholar 

  • Prantera C, Scribano ML (2009) Antibiotics and probiotics in inflammatory bowel disease: why, when, and how. Curr Opin Gastroenterol 25(4):329–333

    CAS  PubMed  Google Scholar 

  • Qiu B et al (1999) The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5(10):1178–1182

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S (2006) Cancer issue: why cancer and inflammation? Yale J Biol Med 79(3–4):123–130

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317(5834):124–127

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241

    CAS  PubMed  Google Scholar 

  • Rashid A, Hamilton S (1997) Genetic alterations in sporadic and Crohn’s-associated adenocarcinomas of the small intestine. Gastroenterology 113(1):127–135

    CAS  PubMed  Google Scholar 

  • Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rennick DM, Fort MM (2000) Lessons from genetically engineered animal models: XII. IL-10-deficient (IL-10−/−) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 278(6):G829–G833

    CAS  PubMed  Google Scholar 

  • Reuter B, Zhang X-J, Miller M (2002) Therapeutic utility of aspirin in the ApcMin/+ murine model of colon carcinogenesis. BMC Cancer 2:19–27

    PubMed  PubMed Central  Google Scholar 

  • Ritland S, Gendler S (1999) Chemoprevention of intestinal adenomas in the ApcMin mouse by piroxicam: kinetics, strain effects and resistance to chemosuppression. Carcinogenesis 20:51–58

    CAS  PubMed  Google Scholar 

  • Rudolph U et al (1995) Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 10(2):143–150

    CAS  PubMed  Google Scholar 

  • Sadlack B et al (1993) Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261

    CAS  PubMed  Google Scholar 

  • Saftig P et al (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 14(15):3599–3608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sartor B (2007) Bacteria in Crohn’s disease: mechanisms of inflammation and therapeutic implications. J Clin Gastroenterol 41:S37–S43

    Google Scholar 

  • Saurer L, Mueller C (2009) T cell-mediated immunoregulation in the gastrointestinal tract. Allergy 64(4):505–519

    CAS  PubMed  Google Scholar 

  • Scanlan P et al (2006) Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol 44(11):3980–3988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppler M et al (2004) An abundance of Escherichia coli is harbored by the mucosa-associated bacterial flora of interleukin-2-deficient mice. Infect Immun 72(4):1983–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seril DN et al (2003) Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24(3):353–362

    CAS  PubMed  Google Scholar 

  • Shekhawat PS et al (2007) Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2/) mice. Mol Genet Metab 92(4):315–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shintani N et al (1997) Proliferative effect of dextran sulfate sodium (DSS)-pulsed macrophages on T cells from mice with DSS-induced colitis and inhibition of effect by IgG. Scand J Immunol 46(6):581–586

    CAS  PubMed  Google Scholar 

  • Shoenfeld Y, Gershwin M (2000) Cancer and autoimmunity. In: Shoenfeld Y, Gershwin M (eds) Cancer and autoimmunity. Elsevier, Amsterdam, pp 1–446

    Google Scholar 

  • Shull M et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegmund B et al (2004) Development of intestinal inflammation in double IL-10-and leptin-deficient mice. J Leukoc Biol 76(4):782–786

    CAS  PubMed  Google Scholar 

  • Siemes C et al (2006) C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 24(33):5216–5222

    CAS  PubMed  Google Scholar 

  • Slattery ML et al (2004) Aspirin, NSAIDs, and colorectal cancer: possible involvement in an insulin-related pathway. Cancer Epidemiol Biomarkers Prev 13(4):538–545

    CAS  PubMed  Google Scholar 

  • Snapper S et al (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9(1):81–91

    CAS  PubMed  Google Scholar 

  • Soderstrom K et al (1996) Increased frequency of abnormal gamma delta T cells in blood of patients with inflammatory bowel diseases. J Immunol 156(6):2331–2339

    CAS  PubMed  Google Scholar 

  • Spencer SD et al (1998) The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 187(4):571–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spurzem J et al (1991) Chronic inflammation is associated with an increased proportion of goblet cells recovered by bronchial lavage. Chest 100(2):389–393

    CAS  PubMed  Google Scholar 

  • Steidler L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289(5483):1352–1355

    CAS  PubMed  Google Scholar 

  • Steinhoff U, Brinkmann V, Klemm U, Aichele P, Seiler P, Brandt U, Bland PW, Prinz I, Zügel U, Kaufmann SH (1999) Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 11(3):349–358

    CAS  PubMed  Google Scholar 

  • Stewart BW, Kleihues P (2003) World cancer report. Iarc, Lyon, pp 56–66

    Google Scholar 

  • Stoicov C et al (2009) T-bet knockout prevents Helicobacter felis-induced gastric cancer. J Immunol 183(1):642–649

    CAS  PubMed  Google Scholar 

  • Stoll M et al (2004) Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 36(5):476–480

    CAS  PubMed  Google Scholar 

  • Strauch UG et al (2007) Calcitriol analog ZK191784 ameliorates acute and chronic dextran sodium sulfate-induced colitis by modulation of intestinal dendritic cell numbers and phenotype. World J Gastroenterol 13(48):6529–6537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara K et al (2005) Linkage to peroxisome proliferator-activated receptor- in SAMP1/YitFc mice and in human Crohn’s disease. Gastroenterology 128(2):351–360

    CAS  PubMed  Google Scholar 

  • Sundberg J et al (1994) Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 107(6):1726–1735

    CAS  PubMed  Google Scholar 

  • Suzuki R et al (2007) Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate. BMC Cancer 7:84

    PubMed  PubMed Central  Google Scholar 

  • Swidsinski A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122(1):44–54

    PubMed  Google Scholar 

  • Takaki K et al (2006) Attenuation of experimental colonic injury by thiazolidinedione agents. Inflamm Res 55(1):10–15

    CAS  PubMed  Google Scholar 

  • Takeda K et al (1996) Essential role of Stat6 in IL-4 signalling. Nature 380(6575):627–630

    CAS  PubMed  Google Scholar 

  • Takeda K et al (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–50

    CAS  PubMed  Google Scholar 

  • Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94(11):965–973

    CAS  PubMed  Google Scholar 

  • te Velde AA, Verstege MI, Hommes DW (2006) Critical appraisal of the current practice in murine TNBS-induced colitis. Inflamm Bowel Dis 12(10):995–999

    Google Scholar 

  • Tlaskalova H et al (2000) Malignancy in coeliac disease and dermatitis herpetiformis. In: Shoenfeld Y, Gershwin M (eds) Cancer and autoimmunity. Elsevier, Amsterdam, pp 105–110

    Google Scholar 

  • Turer EE et al (2008) Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med 205(2):451–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig HH et al (2006) Characterization of Foxp3+ CD4+ CD25+ and IL-10-secreting CD4+ CD25+ T cells during cure of colitis. J Immunol 177(9):5852–5860

    CAS  PubMed  Google Scholar 

  • Uronis J, Threadgill D (2009) Murine models of colorectal cancer. Mamm Genome 20:261–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Sluis M et al (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129

    PubMed  Google Scholar 

  • van Meeteren ME, Meijssen MAC, Zijlstra FJ (2000) The effect of dexamethasone treatment on murine colitis. Scand J Gastroenterol 35(5):517–521

    PubMed  Google Scholar 

  • Verdu EF, Huang X, Natividad J, Lu J, Blennerhassett PA, David CS, McKay DM, Murray JA (2008) Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am J Physiol Gastrointest Liver Physiol 294:G217–25

    CAS  PubMed  Google Scholar 

  • Vogelsang H, Schwarzenhofer M, Oberhuber G (1998) Changes in gastrointestinal permeability in celiac disease. Dig Dis 16:333–336

    CAS  PubMed  Google Scholar 

  • Watanabe M et al (1998) Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 187(3):389–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welte T et al (2003) STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci 100(4):1879–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook A, Schiestl RH (2010) Atm deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation damage and persistent immune activation. Cancer Res 70(5):1875–1884. doi:10.1158/0008-5472.CAN-09-2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook A et al (2009a) More damaging than we think: systemic effects of intestinal inflammation. Cell Cycle 8(16):2482–2483

    CAS  PubMed  Google Scholar 

  • Westbrook AM et al (2009b) Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 69(11):4827–4834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westbrook AM, Szakmary A, Schiestl RH (2010) Mechanisms of intestinal inflammation and development of associated cancers: lessons learned from mouse models. Mutat Res 705(1):40–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler JMD et al (2002) An insight into the genetic pathway of adenocarcinoma of the small intestine. Gut 50(2):218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willerford DM et al (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530

    CAS  PubMed  Google Scholar 

  • Wirtz S, Neurath MF (2007) Mouse models of inflammatory bowel disease. Adv Drug Deliv Rev 59(11):1073–1083

    CAS  PubMed  Google Scholar 

  • Wirtz S et al (1999) Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4- T cells that respond to bacterial antigens. J Immunol 162(4):1884

    CAS  PubMed  Google Scholar 

  • Xie J, Itzkowitz SH (2008) Cancer in inflammatory bowel disease. World J Gastroenterol 14(3):378–389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 18(5):1280–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y et al (2009) T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J Exp Med 206(7):1549–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaph C et al (2007) Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature 446(7135):552–556

    CAS  PubMed  Google Scholar 

  • Zhang MQ, Chen ZME, Wang HL (2006) Immunohistochemical investigation of tumorigenic pathways in small intestinal adenocarcinoma: a comparison with colorectal adenocarcinoma. Mod Pathol 19(4):573–580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH Grant ES09519 (RS), the Jonsson Comprehensive Cancer Foundation (RS), a TRP Grant (L618-B11) from the FWF (AS and RS) and a UCLA-NIEHS training grant in Molecular Toxicology (AW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Schiestl.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

The authors are retracting this article (Westbrook et al. 2016) because it has been published previously (Westbrook et al. 2010). Robert H. Schiestl and Aya M. Westbrook agree with this retraction. Akos Szakmary has not responded to any correspondence about this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westbrook, A.M., Szakmary, A. & Schiestl, R.H. RETRACTED ARTICLE: Mouse models of intestinal inflammation and cancer. Arch Toxicol 90, 2109–2130 (2016). https://doi.org/10.1007/s00204-016-1747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1747-2

Keywords

Navigation