Skip to main content
Log in

Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL−1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1–0.2 μm2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

NRPS:

Non-ribosomal peptide synthetase

OM:

Optical microscopy

PKS:

Polyketide synthase

PE:

Plant emergence

PH:

Plant height

PDW:

Plant dry weight

Xac:

Xanthomonas axonopodis pv. citri

Xcc:

Xanthomonas campestris pv. campestris

References

  • Allende D, Simon SA, McIntosh TJ (2005) Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 88:1828–1837. doi:10.1529/biophysj.104.049817

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aranda FJ, Teruel JA, Ortiz A (2005) Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochim Biophys Acta 1713:51–6. doi:10.1016/j.bbamem.2005.05.003

    Article  PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Bonmatin J-M, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    PubMed  CAS  Google Scholar 

  • Besson F, Peypoux F, Michel G, Delcambe L (1976) Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot 29:1043–1049

    PubMed  CAS  Google Scholar 

  • Christofoletti A (1999) Modelagem de Sistemas Ambientais. Edgard Blucher, São Paulo

    Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    Article  PubMed  CAS  Google Scholar 

  • da Silva A Jr, Teschke O (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Bioch Biophys Acta 1643:95–103. doi:10.1016/j.bbamcr.2003.10.001

    Article  CAS  Google Scholar 

  • Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213. doi:10.1128/JB.184.19.5205-5213.2002

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA (2004a) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243. doi:10.1023/B:JAPH.0000048509.77816.5e

    Article  CAS  Google Scholar 

  • Etchegaray A, Silva-Stenico ME, Moon DH, Tsai SM (2004b) In silico analysis of nonribosomal peptide synthetases of Xanthomonas axonopodis pv. citri: identification of putative siderophore and lipopeptide biosynthetic genes. Microbiol Res 159:425–437. doi:10.1016/j.micres.2004.09.009

    Article  PubMed  CAS  Google Scholar 

  • Gong M, Wang JD, Zhang J, Yang H, Lu XF, Pei Y, Cheng JQ (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Biochim Biophys Sin 38:233–240. doi:10.1111/j.1745-7270.2006.00157.x

    Article  PubMed  CAS  Google Scholar 

  • Grau A, Gómez-Fernández JC, Peypoux F, Ortiz A (2001) Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides 22:1–5. doi:10.1016/S0196-9781(00)00350-8

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemoter 43:1317–1323

    CAS  Google Scholar 

  • Huang X, Wei Z, Zhao G, Gao X, Yang S, Cui Y (2007) Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method. Curr Microbiol 56:376–381. doi:10.1007/s00284-007-9066-8

    Article  PubMed  CAS  Google Scholar 

  • Hwang YH, Park BK, Lim JH, Kim MS, Park SC, Hwang MH, Yun HI (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556:166–171. doi:10.1016/j.ejphar.2006.10.031

    Article  PubMed  CAS  Google Scholar 

  • Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskaya OI, Gorshkova NM, Mikhailov VV, Yumoto N, Shigeri Y, Taguchi T, Yoshikawa S (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271

    PubMed  CAS  Google Scholar 

  • Kim JG, Park BK, Yoo CH, Jeon E, Oh J, Hwang I (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol 185:3155–3166. doi:10.1128/JB.185.10.3155-3166.2003

    Article  PubMed  CAS  Google Scholar 

  • Knoblich A, Matsumoto M, Ishiguro R, Murata K, Fujiyoshi Y, Ishigami Y, Osman M (1995) Electron cryo-microscopic studies on micellar shape and size of surfactin, an anionic lipopeptide. Coll Surf Biointerf 5:43–48. doi:10.1016/0927-7765(95)01207-Y

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Chichester, Wiley, pp 115–175

    Google Scholar 

  • Legrand P, Romero EA, Cohen BE, Bolard J (1992) Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother 36:2518–2522

    PubMed  CAS  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicol 8:151–74

    Article  Google Scholar 

  • Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943

    Article  PubMed  CAS  Google Scholar 

  • Maget-Dana R, Thimon L, Peypoux F, Ptak M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Monteiro L, Mariano RLR, Souto-Maior AM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris. Braz Arch Biol Technol 48:23–29

    Article  CAS  Google Scholar 

  • Meincken M, Holroyd DL, Rautenbach M (2005) Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli. Antimicrob agents chemother 49:4085–4092. doi:10.1128/AAC.49.10.4085-4092.2005

    Article  PubMed  CAS  Google Scholar 

  • Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Article  PubMed  CAS  Google Scholar 

  • Nikaido H (2003) Molecular Basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. doi:10.1128/MMBR.67.4.593-656.2003

    Article  PubMed  CAS  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic alpha-helical peptides. Biopolymers 47:451–463

    Article  PubMed  CAS  Google Scholar 

  • Phister TG, O’Sullivan DJ, McKay LL (2004) Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a Mexican fermented maize dough. Appl Environ Microbiol 70:631–634. doi:10.1128/AEM.70.1.631-634.2004

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan A, Sadana A (2002) A mathematical analysis using fractals for binding interactions of nuclear estrogen receptors occurring on biosensor surfaces. Anal Biochem 303:78–92. doi:10.1006/abio.2002.5581

    Article  PubMed  CAS  Google Scholar 

  • Razafindralambo H, Popineau Y, Deleu M, Hbid C, Jacques P, Tonart P, Paquot M (1997) Surface-active properties of surfactin/iturin A mixtures produced by Bacillus subtilis. Langmuir 13:6026–6031

    Article  CAS  Google Scholar 

  • Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr 639:81–85

    Article  PubMed  CAS  Google Scholar 

  • Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Appl Microbiol 103:969–976. doi:10.1111/j.1365-2672.2007.03433.x

    CAS  Google Scholar 

  • Sprencel C, Cao Z, Qi Z, Scott D, Montague M, Ivanoff N, Xu J, Raymond K, Newton S, Klebba P (2000) Binding of ferric enterobactin by the Escherichia coli periplasmic protein FepB. J Bacteriol 182:5359–5364

    Article  PubMed  CAS  Google Scholar 

  • Thimon L, Peypoux F, Wallach J, Michel G (1995) Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells. FEMS Microbiol Lett 128:101–106

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, Sequencing, and Characterization of the Iturin A Operon. J Bacteriol 183:6265–6273

    Article  PubMed  CAS  Google Scholar 

  • Tsuge K, Ano T, Shoda M (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Arch Microbiol 165:243–251

    Article  PubMed  CAS  Google Scholar 

  • Umezawa H, Aoyagi T, Nishikiori T, Okuyama A, Yamagishi Y, Hamada M, Takeuchi T (1986) Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67. I. Taxonomy, production, isolation and preliminary characterization. J Antibiot 39:737–44

    PubMed  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Muhsin OZ, Vater J (1997) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63:44–49

    PubMed  CAS  Google Scholar 

  • Zhang L, Dhillon P, Yan H, Farmer S, Hancock REW (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob agents chemother 44:3317–3321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Fundação de Pesquisa de São Paulo (Fapesp grants 96/11193-7 and 03/12529-4) and the Conselho Nacional de Pesquisa (CNPq). We would like to thank the valuable research assistance of L. O. Bonugli and J. R. Castro. M. E. Silva-Stenico was the recipient of postdoctoral fellowship from FAPESP (Grant 2004/16042-5)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Etchegaray.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Etchegaray, A., de Castro Bueno, C., de Melo, I.S. et al. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Arch Microbiol 190, 611–622 (2008). https://doi.org/10.1007/s00203-008-0409-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0409-z

Keywords

Navigation