Skip to main content

Advertisement

Log in

Osteogenic induction from marmoset embryonic stem cells cultured in feeder-dependent and feeder-independent conditions

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Embryonic stem cells (ESCs) have become increasingly attractive for cell replacement therapies of osteodegenerative diseases; however, pre-clinical studies in large animal models to repair diseased or injured bone are lacking. As a first step into this direction, we describe here the feeder-free cultivation and directed osteogenic differentiation of marmoset ESCs.

Introduction

Owing to their potential to self-renew and their enormous differentiation capability, ESCs are an adequate cell source for cell replacement therapies. To implement stem cell technology clinically, standardized cultivation and differentiation protocols and appropriate animal models are needed. Here, we describe the feeder-free cultivation of Callithrix jacchus ESCs (cESCs) in a chemically defined medium and their subsequent osteogenic differentiation.

Methods

cESCs were maintained on mouse embryonic fibroblast feeder layers or in feeder-free conditions with activin A and basic fibroblast growth factor. Differentiation into mature osteoblasts was steered with ascorbic acid, β-glycerophosphate and 1α,25-(OH)2 vitamin D3 employing various induction strategies.

Results

In feeder-free conditions, cESCs maintained pluripotency as indicated by Oct-4 and Nanog expression, positive immunostaining for typical primate ESC markers and high telomerase activity. Cells also remained karyotypically normal after 40 passages without feeder cells. The hanging drop protocol as well as omitting the embryoid body step proved unsuccessful to initiate osteogenic differentiation. The highest degree of osteogenesis was achieved by formation of embryoid bodies employing the cell cluster technique as indicated by the amount of deposited calcium and bone marker gene expression. Early addition of retinoic acid further improved the yield of osteoblasts and led to an increase in calcium deposition.

Conclusions

The osteogenic differentiation potential of feeder-free cESCs was equal if not higher compared to cells grown on feeders. These findings open the field for near clinical transplantation studies in primate models to evaluate the effectiveness of ESC-derived osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231

    Article  CAS  PubMed  Google Scholar 

  2. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  3. Park JH, Kim SJ, Oh EJ, Moon SY, Roh SI, Kim CG et al (2003) Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol Reprod 69:2007–2014

    Article  CAS  PubMed  Google Scholar 

  4. Meng GL, zur Nieden NI, Liu SY, Cormier JT, Kallos MS, Rancourt DE (2008) Properties of murine embryonic stem cells maintained on human foreskin fibroblasts without LIF. Mol Reprod Dev 75:614–622

    Article  CAS  PubMed  Google Scholar 

  5. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP et al (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336:684–687

    Article  CAS  PubMed  Google Scholar 

  6. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA et al (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259

    Article  CAS  PubMed  Google Scholar 

  7. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  CAS  PubMed  Google Scholar 

  8. Vallier L, Alexander M, Pedersen RA (2005) Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    Article  CAS  PubMed  Google Scholar 

  9. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C et al (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Wang S, Yang S, Li T, Ji S, Chen H et al (2006) Feeder layer- and serum-free culture of rhesus monkey embryonic stem cells. Reprod Biomed Online 13:412–420

    Article  PubMed  Google Scholar 

  11. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  12. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  CAS  PubMed  Google Scholar 

  13. zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71:18–27

    Article  PubMed  Google Scholar 

  14. Schuldiner M, Eiges R, Eden A, Yanuka O, Itskovitz-Eldor J, Goldstein RS et al (2001) Induced neuronal differentiation of human embryonic stem cells. Brain Res 913:201–205

    Article  CAS  PubMed  Google Scholar 

  15. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sottile V, Thomson A, McWhir J (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5:149–155

    Article  CAS  PubMed  Google Scholar 

  17. Poswillo DE, Hamilton WJ, Sopher D (1972) The marmoset as an animal model for teratological research. Nature 239(5373):460–462

    Article  CAS  PubMed  Google Scholar 

  18. Seidlová-Wuttke D, Schlumbohm C, Jarry H, Dullin C, Wuttke W (2008) Orchidectomized (orx) marmoset (Callithrix jacchus) as a model to study the development of osteopenia/osteoporosis. Am J Primatol 70(3):294–300

    Article  PubMed  Google Scholar 

  19. Tsujio M, Mizorogi T, Kitamura I, Maeda Y, Nishijama K, Kuwahara S et al (2009) Bone mineral analysis through dual energy X-ray absorptiometry in laboratory animals. J Vet Med Sci 71(11):1493–1497

    Article  PubMed  Google Scholar 

  20. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523–527

    Article  CAS  PubMed  Google Scholar 

  21. Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T, Ishii H et al (2005) Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23(9):1304–1313

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Hattori F, Murata M, Li W, Yuasa S, Onizuka T et al (2008) Common marmoset embryonic stem cell can differentiate into cardiomyocytes. Biochem Biophys Res Commun 369:801–806

    Article  CAS  PubMed  Google Scholar 

  23. Kurita R, Sasaki E, Yokoo T, Hiroyama T, Takasugi K, Imoto H et al (2006) Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells. Stem Cells 24:2014–2022

    Article  CAS  PubMed  Google Scholar 

  24. Shimada H, Okada Y, Ibata K, Ebise H, Ota S et al (2012) Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells. PLoS One 7(11):e49469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. zur Nieden NI, Price FD, Davis LA, Everitt RE, Rancourt DE (2007) Gene profiling on mixed embryonic stem cell populations reveals a biphasic role for beta-catenin in osteogenic differentiation. Mol Endocrinol 21:674–685

    Article  PubMed  Google Scholar 

  26. zur Nieden NI, Kempka G, Ahr HJ (2004) Molecular multiple endpoint embryonic stem cell test-a possible approach to test for the teratogenic potential of compounds. Toxicol Appl Pharmacol 194:257–269

    Article  PubMed  Google Scholar 

  27. Müller T, Fleischmann G, Eildermann K, Mätz-Rensing K, Horn PA, Sasaki E et al (2009) A novel embryonic stem cell line derived from the common marmoset monkey (Callithrix jacchus) exhibiting germ cell-like characteristics. Hum Reprod 24:1359–1372

    Article  PubMed  Google Scholar 

  28. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20(4):329–337

    Article  CAS  PubMed  Google Scholar 

  29. Davis LA, Dienelt A, zur Nieden NI (2011) Absorption based assays for the identification of skeletal cell types. Methods Mol Biol 690:255–272

    Article  CAS  PubMed  Google Scholar 

  30. Herman B (1998) Absorption and emission maxima for common fluorophores. In: Bonifacino JS (ed) Current protocols in cell biology. Wiley, New York, pp A.1E.1–A.1E.5

    Google Scholar 

  31. Suemori H, Tada T, Torii R, Hosoi Y, Kobayashi K, Imahie H et al (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222:273–279

    Article  CAS  PubMed  Google Scholar 

  32. Warthemann R, Eildermann K, Debowski K, Behr R (2012) False-positive antibody signals for the pluripotency factor OCT4A (POU5F1) in testis-derived cells may lead to erroneous data and misinterpretations. Mol Hum Reprod 18(12):605–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Trettner S, Seeliger A, zur Nieden NI (2011) Embryoid body formation: recent advances in automated bioreactor technology. Methods Mol Biol 690:135–149

    Article  CAS  PubMed  Google Scholar 

  34. Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 24:835–843

    Article  PubMed  Google Scholar 

  35. Bodine PV, Komm BS (2006) Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 7:33–39

    Article  CAS  PubMed  Google Scholar 

  36. Davis LA, zur Nieden NI (2008) Mesodermal fate decisions of a stem cell: the Wnt switch. Cell Mol Life Sci 65:2658–2674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Anton R, Kestler HA, Kühl M (2007) Beta-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Lett 581:5247–5254

    Article  CAS  PubMed  Google Scholar 

  39. Ding H, Keller KC, Martinez IK, Geransar RM, zur Nieden KO et al (2012) NO/beta-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation. J Cell Sci 125:5564–5577

    Article  CAS  PubMed  Google Scholar 

  40. Fleischmann G, Müller T, Blasczyk R, Sasaki E, Horn PA (2009) Growth characteristics of the nonhuman primate embryonic stem cell line cjes001 depending on feeder cell treatment. Cloning Stem Cells 11(2):225–233

    Article  CAS  PubMed  Google Scholar 

  41. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  CAS  PubMed  Google Scholar 

  42. zur Nieden NI (2011) Embryonic stem cells for osteo-degenerative diseases. Methods Mol Biol 690:1–30

    Article  PubMed  Google Scholar 

  43. Keller KC, zur Nieden NI (2011) Osteogenesis from pluripotent stem cells: neural crest or mesodermal origin? In: Kallos MS (ed) Embryonic stem cells—differentiation and pluripotent alternatives. InTech, 323–348

  44. Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP et al (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 7:89–99

    Article  CAS  PubMed  Google Scholar 

  45. Phillips BW, Belmonte N, Vernochet C, Ailhaud G, Dani C (2001) Compactin enhances osteogenesis in murine embryonic stem cells. Biochem Biophys Res Commun 284:478–484

    Article  CAS  PubMed  Google Scholar 

  46. Beresford JN, Bennett JH, Devlin C, Lebov PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351

    CAS  PubMed  Google Scholar 

  47. van Leeuwen JP, van Driel M, van den Bernd GJ, Pols HA (2001) Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit Rev Eukaryot Gene Expr 11:199–226

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the German Federal Ministry of Education and Research (no. 0315121A) to NzN. We are grateful to Dr. Gesine Fleischmann for help with setting up marmoset ESC culture and Dr. Ludovic Vallier for assistance with feeder-free culture.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. zur Nieden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trettner, S., Findeisen, A., Taube, S. et al. Osteogenic induction from marmoset embryonic stem cells cultured in feeder-dependent and feeder-independent conditions. Osteoporos Int 25, 1255–1266 (2014). https://doi.org/10.1007/s00198-013-2566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2566-4

Keywords

Navigation