Skip to main content
Log in

Degenerative changes at the lumbar spine—implications for bone mineral density measurement in elderly women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Degenerative changes of the lumbar spine may lead to misinterpretation of bone mineral density (BMD) measurements and cause underdiagnosis of osteoporosis. This longitudinal study of 1,044 women, 75 years at inclusion and followed for 10 years, shows that identification of apparent degenerative changes on the dual energy X-ray absorptiometry (DXA) scan can increase the proportion diagnosed.

Introduction

In the elderly, degenerative manifestations in the lumbar spine may result in falsely elevated BMD values, consequently missing a large proportion of those with osteoporosis. Our aim was to determine the distribution and impact of degenerative changes on lumbar spine DXA over time and its clinical implications.

Methods

Participants were 1,044 women from the population-based Osteoporosis Risk Assessment cohort. All women were 75 years old at invitation and followed up after 5 years (n = 715) and 10 years (n = 382). Degenerative changes were evaluated visually on the DXA image for each vertebra L1 to L4 (intraobserver precision kappa values of 0.66–0.70).

Results

At baseline, apparent degenerative changes were more frequent in the inferior segments of the lumbar spine [5 % (L1), 15 % (L2), 26 % (L3), and 36 % (L4)] and increased over time. At 10 years, the prevalences were 20 % (L1), 39 % (L2), 59 % (L3), 72 % (L4), resulting in a significant increase in overall BMD. In women without apparent degenerative changes, BMD remained stable between 75 and 85 rather than an expected bone loss. At baseline, 37 % had osteoporosis (BMD < −2.5) at L1–L4; exclusion of women with apparent degenerative changes increased this proportion to 47 %. Using L1–L2, which was less prone to degenerative changes, 46 % of women were classified as osteoporotic regardless of degenerative changes.

Conclusion

Degenerative changes were very common in elderly women, accelerated disproportionately over time, were increasingly frequent from vertebrae L1 to L4, and had significant impact on diagnosing osteoporosis. This suggests that routine reporting of spine BMD at L1–L2 would add valuable information for reassessment and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    Article  PubMed  CAS  Google Scholar 

  2. Blake GM, Fogelman I (2007) Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis. J Clin Densitom 10:102–110. doi:10.1016/j.jocd.2006.11.001

    Article  PubMed  Google Scholar 

  3. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214. doi:10.1359/jbmr.071020

    Article  PubMed  Google Scholar 

  4. Paiva LC, Filardi S, Pinto-Neto AM, Samara A, Marques Neto JF (2002) Impact of degenerative radiographic abnormalities and vertebral fractures on spinal bone density of women with osteoporosis. Sao Paulo Med J 120:9–12

    Article  PubMed  Google Scholar 

  5. Dalle Carbonare L, Giannini S, Sartori L, Nobile M, Ciuffreda M, Silva-Netto F, Arlot ME, Crepaldi G (2000) Lumbar osteoarthritis, bone mineral density, and quantitative ultrasound. Aging (Milano) 12:360–365

    CAS  Google Scholar 

  6. Kinoshita H, Tamaki T, Hashimoto T, Kasagi F (1998) Factors influencing lumbar spine bone mineral density assessment by dual-energy X-ray absorptiometry: comparison with lumbar spinal radiogram. J Orthop Sci 3:3–9

    Article  PubMed  CAS  Google Scholar 

  7. Rand T, Schneider B, Grampp S, Wunderbaldinger P, Migsits H, Imhof H (1997) Influence of osteophytic size on bone mineral density measured by dual X-ray absorptiometry. Acta Radiol 38:210–213

    PubMed  CAS  Google Scholar 

  8. Vogt MT, Rubin DA, San Valentin R, Palermo L, Kang JD, Donaldson WF 3rd, Nevitt M, Cauley JA (1999) Degenerative lumbar listhesis and bone mineral density in elderly women. The study of osteoporotic fractures. Spine (Phila Pa 1976) 24:2536–2541

    Article  CAS  Google Scholar 

  9. Muraki S, Yamamoto S, Ishibashi H, Horiuchi T, Hosoi T, Orimo H, Nakamura K (2004) Impact of degenerative spinal diseases on bone mineral density of the lumbar spine in elderly women. Osteoporos Int 15:724–728. doi:10.1007/s00198-004-1600-y

    Article  PubMed  Google Scholar 

  10. Hayirlioglu A, Gokaslan H, Cimsit C, Baysal B (2009) The importance of severity of arthrosis for the reliability of bone mineral density measurement in women. Rheumatol Int 29:371–375. doi:10.1007/s00296-008-0701-x

    Article  PubMed  Google Scholar 

  11. Schmitt H, Friebe C, Schneider S, Sabo D (2005) Bone mineral density and degenerative changes of the lumbar spine in former elite athletes. Int J Sports Med 26:457–463. doi:10.1055/s-2004-820991

    Article  PubMed  CAS  Google Scholar 

  12. Kaleta M, Wronski S (2001) The most common errors in the densitometric diagnosis of osteoporosis. Ortop Traumatol Rehabil 3:338–344

    PubMed  CAS  Google Scholar 

  13. Reid IR, Evans MC, Ames R, Wattie DJ (1991) The influence of osteophytes and aortic calcification on spinal mineral density in postmenopausal women. J Clin Endocrinol Metab 72:1372–1374

    Article  PubMed  CAS  Google Scholar 

  14. Atalay A, Kozakcioglu M, Cubuk R, Tasali N, Guney S (2009) Degeneration of the lumbar spine and dual-energy X-ray absorptiometry measurements in patients without osteoporosis. Clin Imaging 33:374–378. doi:10.1016/j.clinimag.2008.12.005

    Article  PubMed  Google Scholar 

  15. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1995) A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol 22:932–936

    PubMed  CAS  Google Scholar 

  16. Arabi A, Baddoura R, Awada H, Khoury N, Haddad S, Ayoub G, El-Hajj Fuleihan G (2007) Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures. Bone 40:1060–1065. doi:10.1016/j.bone.2006.11.017

    Article  PubMed  Google Scholar 

  17. Greenspan SL, Maitland LA, Myers ER, Krasnow MB, Kido TH (1994) Femoral bone loss progresses with age: a longitudinal study in women over age 65. J Bone Miner Res 9:1959–1965. doi:10.1002/jbmr.5650091216

    Article  PubMed  CAS  Google Scholar 

  18. Pye SR, Reid DM, Adams JE, Silman AJ, O’Neill TW (2006) Radiographic features of lumbar disc degeneration and bone mineral density in men and women. Ann Rheum Dis 65:234–238. doi:10.1136/ard.2005.038224

    Article  PubMed  CAS  Google Scholar 

  19. Dequeker J, Aerssens J, Luyten FP (2003) Osteoarthritis and osteoporosis: clinical and research evidence of inverse relationship. Aging Clin Exp Res 15:426–439

    PubMed  Google Scholar 

  20. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  PubMed  CAS  Google Scholar 

  21. Kettler A, Wilke HJ (2006) Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J 15:705–718. doi:10.1007/s00586-005-0954-y

    Article  PubMed  Google Scholar 

  22. Baim S, Leonard MB, Bianchi ML, Hans DB, Kalkwarf HJ, Langman CB, Rauch F (2008) Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom 11:6–21. doi:10.1016/j.jocd.2007.12.002

    Article  PubMed  Google Scholar 

  23. Pappou IP, Girardi FP, Sandhu HS, Parvataneni HK, Cammisa FP Jr, Schneider R, Frelinghuysen P, Lane JM (2006) Discordantly high spinal bone mineral density values in patients with adult lumbar scoliosis. Spine (Phila Pa 1976) 31:1614–1620. doi:10.1097/01.brs.0000222030.32171.5f

    Article  Google Scholar 

  24. Gerdhem P, Brandstrom H, Stiger F, Obrant K, Melhus H, Ljunggren O, Kindmark A, Akesson K (2004) Association of the collagen type 1 (COL1A 1) Sp1 binding site polymorphism to femoral neck bone mineral density and wrist fracture in 1044 elderly Swedish women. Calcif Tissue Int 74:264–269. doi:10.1007/s00223-002-2159-2

    Article  PubMed  CAS  Google Scholar 

  25. Lenora J, Akesson K, Gerdhem P (2010) Effect of precision on longitudinal follow-up of bone mineral density measurements in elderly women and men. J Clin Densitom 13:407–412. 10.1016/j.jocd.2010.04.004

    Google Scholar 

  26. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  27. Hicks GE, Morone N, Weiner DK (2009) Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine (Phila Pa 1976) 34:1301–1306. doi:10.1097/BRS.0b013e3181a18263

    Article  Google Scholar 

  28. Hasserius R, Redlund-Johnell I, Mellstrom D, Johansson C, Nilsson BE, Johnell O (2001) Vertebral deformation in urban Swedish men and women: prevalence based on 797 subjects. Acta Orthop Scand 72:273–278. doi:10.1080/00016470152846619

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki N, Ogikubo O, Hansson T (2009) The prognosis for pain, disability, activities of daily living and quality of life after an acute osteoporotic vertebral body fracture: its relation to fracture level, type of fracture and grade of fracture deformation. Eur Spine J 18:77–88. doi:10.1007/s00586-008-0847-y

    Article  PubMed  Google Scholar 

  30. Mulvihill BM, McNamara LM, Prendergast PJ (2008) Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis. J R Soc Interface 5:1243–1253. doi:10.1098/rsif.2007.1341

    Article  PubMed  Google Scholar 

  31. Livshits G, Ermakov S, Popham M, Macgregor AJ, Sambrook PN, Spector TD, Williams FM (2010) Evidence that bone mineral density plays a role in degenerative disc disease: the UK Twin Spine study. Ann Rheum Dis 69:2102–2106. doi:10.1136/ard.2010.131441

    Article  PubMed  Google Scholar 

  32. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ 3rd (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330

    Article  PubMed  CAS  Google Scholar 

  33. Johansson C, Black D, Johnell O, Oden A, Mellstrom D (1998) Bone mineral density is a predictor of survival. Calcif Tissue Int 63:190–196

    Article  PubMed  CAS  Google Scholar 

  34. Yu W, Gluer CC, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int 5:433–439

    Article  PubMed  CAS  Google Scholar 

  35. Ito M, Nakamura T, Tsurusaki K, Uetani M, Hayashi K (1999) Effects of menopause on age-dependent bone loss in the axial and appendicular skeletons in healthy Japanese women. Osteoporos Int 10:377–383

    Article  PubMed  CAS  Google Scholar 

  36. Ito M, Nishida A, Kono J, Kono M, Uetani M, Hayashi K (2003) Which bone densitometry and which skeletal site are clinically useful for monitoring bone mass? Osteoporos Int 14:959–964. doi:10.1007/s00198-003-1497-x

    Article  PubMed  Google Scholar 

  37. Steiger P, Block JE, Steiger S, Heuck AF, Friedlander A, Ettinger B, Harris ST, Gluer CC, Genant HK (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level, and technique. Radiology 175:537–543

    PubMed  CAS  Google Scholar 

  38. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. doi:10.1002/jbmr.5650080915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to all the women who kindly participated in the study and to the staff at the Clinical and Molecular Osteoporosis Research Unit for helping in recruitment of study individuals. This work was supported by grants from the Swedish Research Council (grant K2009-53X-14691-07-3), FAS (grant 2007–2125), Greta and Johan Kock Foundation, A Påhlsson Foundation, A Osterlund Foundation, King Gustav V, and Queen Victoria Foundation, Malmö University Hospital Research Foundation, Research and Development Council of Region Skåne, Sweden, and the Swedish Medical Society.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Åkesson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenne, M., McGuigan, F., Besjakov, J. et al. Degenerative changes at the lumbar spine—implications for bone mineral density measurement in elderly women. Osteoporos Int 24, 1419–1428 (2013). https://doi.org/10.1007/s00198-012-2048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2048-0

Keywords

Navigation