Skip to main content
Log in

Bone mass in male and female children and adolescents with Down syndrome

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Children and adolescents with Down syndrome (DS) have lower levels of bone mass compared with youths without DS. Their sexual dimorphism in bone mass also differs from that observed in children and adolescents without Down syndrome.

Introduction

This study aimed to compare bone mass and sexual dimorphism in bone mass between male and female youths with DS and age- and sex-matched controls without DS.

Methods

Bone mineral density (BMD), volumetric BMD, bone mineral apparent density (BMAD), BMD/height (BMDH), and total lean mass were measured or calculated from DXA. Thirty-two youths (15 females) with DS and 32 youths (13 females) without DS participated in the study.

Results

ANOVA tests showed lower BMAD and BMDH in females with DS compared with females without DS. ANCOVA tests revealed lower BMD in the whole body of males and females as well as BMD in the hip region of the females with DS compared with their counterparts without DS. Within the group with DS, females had greater lumbar spine BMD than the males.

Conclusions

The low values of BMD and related parameters, together with the differences in the sexual dimorphism, indicate a non-standard bone development in this specific population of children and adolescents with DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46:282–286

    Article  PubMed  CAS  Google Scholar 

  2. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH (2002) The changing survival profile of people with Down's syndrome: implications for genetic counselling. Clin Genet 62:390–393

    Article  PubMed  CAS  Google Scholar 

  3. Smith DS (2001) Health care management of adults with Down syndrome. Am Fam Physician 64:1031–1038

    PubMed  CAS  Google Scholar 

  4. Rizzoli R, Bonjour JP (1999) Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int 9(Suppl 2):S17–S23

    Article  PubMed  Google Scholar 

  5. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305

    Article  PubMed  Google Scholar 

  6. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down's syndrome. Eur Radiol 9:648–651

    Article  PubMed  CAS  Google Scholar 

  7. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212

    Article  PubMed  CAS  Google Scholar 

  8. Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16:380–388

    Article  PubMed  Google Scholar 

  9. Sepulveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson RN Jr, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114

    PubMed  CAS  Google Scholar 

  10. Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down's syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775

    PubMed  CAS  Google Scholar 

  11. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA (2008) Bone mass in young adults with Down syndrome. J Intellect Disabil Res 52:182–189

    Article  PubMed  CAS  Google Scholar 

  12. Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66:176–180

    Article  PubMed  CAS  Google Scholar 

  13. Halaba Z, Pyrkosz A, Adamczyk P, Drozdzowska B, Pluskiewicz W (2006) Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 32:409–413

    Article  PubMed  Google Scholar 

  14. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Guerra-Balic M, Ara I, Casajus JA (2010) Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports 20:716–724

    Article  PubMed  Google Scholar 

  15. Nguyen TV, Maynard LM, Towne B, Roche AF, Wisemandle W, Li J, Guo SS, Chumlea WC, Siervogel RM (2001) Sex differences in bone mass acquisition during growth: the Fels Longitudinal Study. J Clin Densitom 4:147–157

    Article  PubMed  CAS  Google Scholar 

  16. Wolff J (1892) The law of bone formation. Hirschwald, Berlin

    Google Scholar 

  17. Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass and physical fitness in prepubescent footballers. Bone 33:853–859

    Article  PubMed  CAS  Google Scholar 

  18. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36:1789–1795

    Article  PubMed  Google Scholar 

  19. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

    Article  PubMed  CAS  Google Scholar 

  20. Gravholt CH, Lauridsen AL, Brixen K, Mosekilde L, Heickendorff L, Christiansen JS (2002) Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 87:2798–2808

    Article  PubMed  CAS  Google Scholar 

  21. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339

    Article  PubMed  CAS  Google Scholar 

  22. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, Black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712

    Article  PubMed  CAS  Google Scholar 

  23. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int 59:344–351

    Article  PubMed  CAS  Google Scholar 

  24. Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36:561–569

    Article  PubMed  Google Scholar 

  25. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC Jr (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82:591–605

    Article  PubMed  Google Scholar 

  27. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors want to thank all the children and their parents who participated in the study, for their understanding and dedication to the project. Special thanks are given to Fundación Down Zaragoza and Special Olympics Aragon for their support. We also thank Scott G. Mitchell from the University of Glasgow for his work of reviewing the English style and grammar, and Paula Velasco from the University of Zaragoza for her great technical assistance. This work was supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio físico y salud para poblaciones especiales-EXERNET-DEP2005-00046/ACTI). There are no potential conflicts of interest that may affect the contents of this work.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Casajús.

Appendix 1

Appendix 1

Table 3 Mean and standard deviation in raw values of bone mineral density of children and adolescents with and without Down syndrome

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Agüero, A., Vicente-Rodríguez, G., Moreno, L.A. et al. Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int 22, 2151–2157 (2011). https://doi.org/10.1007/s00198-010-1443-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1443-7

Keywords

Navigation