Skip to main content
Log in

Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To investigate the association of quantitative magnetic resonance imaging (qMRI) parameters with arthroscopic grading of cartilage degeneration. Arthroscopy of the knee is considered to be the gold standard of osteoarthritis diagnostics; however, it is operator-dependent and limited to the evaluation of the articular surface. qMRI provides information on the quality of articular cartilage and its changes even at early stages of a disease.

Methods

qMRI techniques included T 1 relaxation time, T 2 relaxation time, and delayed gadolinium-enhanced MRI of cartilage mapping at 3 T in ten patients. Due to a lack of generally accepted semiquantitative scoring systems for evaluating severity of cartilage degeneration during arthroscopy, the International Cartilage Repair Society (ICRS) classification system was used to grade the severity of cartilage lesions. qMRI parameters were statistically compared to arthroscopic grading conducted with the ICRS classification system.

Results

qMRI parameters were not linearly related to arthroscopic grading. Spearman’s correlation coefficients between qMRI and arthroscopic grading were not significant. The relative differences in qMRI parameters of superficial and deep cartilage varied with degeneration, suggesting different macromolecular alterations in different cartilage zones.

Conclusions

Results suggest that loss of cartilage and the quality of remaining tissue in the lesion site may not be directly associated with each other. The severity of cartilage degeneration may not be revealed solely by diagnostic arthroscopy, and thus, qMRI can have a role in the investigation of cartilage degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aigner T, Gluckert K, von der Mark K (1997) Activation of fibrillar collagen synthesis and phenotypic modulation of chondrocytes in early human osteoarthritic cartilage lesions. Osteoarthritis Cartilage 5:183–189

    Article  CAS  PubMed  Google Scholar 

  2. Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238

    Article  CAS  PubMed  Google Scholar 

  3. Ayral X, Dougados M, Listrat V, Bonvarlet J, Simonnet J, Poiraudeau S, Amor B (1993) Chondroscopy: a new method for scoring chondropathy. Semin Arthritis Rheum 22:289–297

    Article  CAS  PubMed  Google Scholar 

  4. Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43:2202–2210

    Article  CAS  PubMed  Google Scholar 

  5. Berberat JE, Nissi MJ, Jurvelin JS, Nieminen MT (2009) Assessment of interstitial water content of articular cartilage with T1 relaxation. Magn Reson Imaging 27:727–732

    Article  PubMed  Google Scholar 

  6. Binks DA, Hodgson RJ, Ries ME, Foster RJ, Smye SW, McGonagle D, Radjenovic A (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86:20120163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brismar BH, Wredmark T, Movin T, Leandersson J, Svensson O (2002) Observer reliability in the arthroscopic classification of osteoarthritis of the knee. J Bone Joint Surg Br 84:42–47

    Article  CAS  PubMed  Google Scholar 

  8. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69

    PubMed  Google Scholar 

  9. Broderick LS, Turner DA, Renfrew DL, Schnitzer TJ, Huff JP, Harris C (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. Am J Roentgenol (AJR) 162:99–103

    Article  CAS  Google Scholar 

  10. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  11. Chu CR, Williams A, Tolliver D, Kwoh CK, Bruno S III, Irrgang JJ (2010) Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears. Arthritis Rheum 62:1412–1420

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dahlberg L, Lammentausta E, Tiderius CJ, Nieminen MT (2012) In vivo monitoring of joint cartilage. Lessons to be learned by contrast-enhanced MRI of cartilage (dGEMRIC). Eur Musculoskelet Rev 7:58–62

    Google Scholar 

  13. David-Vaudey E, Ghosh S, Ries M, Majumdar S (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22:673–682

    Article  PubMed  Google Scholar 

  14. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232:592–598

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14(Suppl A):A46–A75

    Article  PubMed  Google Scholar 

  16. Fife RS, Brandt KD, Braunstein EM, Katz BP, Shelbourne KD, Kalasinski LA, Ryan S (1991) Relationship between arthroscopic evidence of cartilage damage and radiographic evidence of joint space narrowing in early osteoarthritis of the knee. Arthritis Rheum 34:377–382

    Article  CAS  PubMed  Google Scholar 

  17. Gillis A, Bashir A, McKeon B, Scheller A, Gray ML, Burstein D (2001) Magnetic resonance imaging of relative glycosaminoglycan distribution in patients with autologous chondrocyte transplants. Invest Radiol 36:743–748

    Article  CAS  PubMed  Google Scholar 

  18. Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56:527–534

    Article  CAS  PubMed  Google Scholar 

  19. Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D (2013) MRI-based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev Rheumatol 9:236–251

    Article  PubMed  Google Scholar 

  20. Hannila I, Raina SS, Tervonen O, Ojala R, Nieminen MT (2009) Topographical variation of T2 relaxation time in the young adult knee cartilage at 1.5 T. Osteoarthritis Cartilage 17:1570–1575

    Article  CAS  PubMed  Google Scholar 

  21. Hirvasniemi J, Kulmala KA, Lammentausta E, Ojala R, Lehenkari P, Kamel A, Jurvelin JS, Toyras J, Nieminen MT, Saarakkala S (2013) In vivo comparison of delayed gadolinium-enhanced MRI of cartilage and delayed quantitative CT arthrography in imaging of articular cartilage. Osteoarthritis Cartilage 21:434–442

    Article  CAS  PubMed  Google Scholar 

  22. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM, Roemer FW (2011) Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 19:990–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67:206–211

    Article  CAS  PubMed  Google Scholar 

  24. Joseph GB, Baum T, Alizai H, Carballido-Gamio J, Nardo L, Virayavanich W, Lynch JA, Nevitt MC, McCulloch CE, Majumdar S, Link TM (2012) Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years–data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 20:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kimelman T, Vu A, Storey P, McKenzie C, Burstein D, Prasad P (2006) Three-dimensional T1 mapping for dGEMRIC at 3.0 T using the Look Locker method. Invest Radiol 41:198–203

    Article  PubMed  Google Scholar 

  26. Koff MF, Parratte S, Amrami KK, Kaufman KR (2009) Examiner repeatability of patellar cartilage T2 values. Magn Reson Imaging 27:131–136

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kornaat PR, Ceulemans RY, Kroon HM, Riyazi N, Kloppenburg M, Carter WO, Woodworth TG, Bloem JL (2005) MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skelet Radiol 34:95–102

    Article  Google Scholar 

  28. Lammentausta E, Kiviranta P, Toyras J, Hyttinen MM, Kiviranta I, Nieminen MT, Jurvelin JS (2007) Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration. Osteoarthritis Cartilage 15:1149–1157

    Article  CAS  PubMed  Google Scholar 

  29. Lammentausta E, Kiviranta P, Nissi MJ, Laasanen MS, Kiviranta I, Nieminen MT, Jurvelin JS (2006) T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: relationships with tissue mechanical properties. J Orthop Res 24:366–374

    Article  CAS  PubMed  Google Scholar 

  30. Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 20:407–422

    Article  PubMed  Google Scholar 

  31. Mankin HJ, Thrasher AZ (1975) Water content and binding in normal and osteoarthritic human cartilage. J Bone Joint Surg Am 57:76–80

    CAS  PubMed  Google Scholar 

  32. McKeag D, Smith BW, Edminster R, Laird T, Clark J, Herron S (1992) Estimating the severity of osteoarthritis with magnetic resonance spectroscopy. Semin Arthritis Rheum 21:227–238

    Article  CAS  PubMed  Google Scholar 

  33. Menezes NM, Gray ML, Hartke JR, Burstein D (2004) T2 and T1rho MRI in articular cartilage systems. Magn Reson Med 51:503–509

    Article  CAS  PubMed  Google Scholar 

  34. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  35. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. Am J Roentgenol (AJR) 177:665–669

    Article  CAS  Google Scholar 

  36. Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    Article  CAS  PubMed  Google Scholar 

  37. Nissi MJ, Toyras J, Laasanen MS, Rieppo J, Saarakkala S, Lappalainen R, Jurvelin JS, Nieminen MT (2004) Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage. J Orthop Res 22:557–564

    Article  CAS  PubMed  Google Scholar 

  38. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12:177–190

    Article  CAS  PubMed  Google Scholar 

  39. Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM (2013) T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 21:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratcliffe A, Billingham ME, Saed-Nejad F, Muir H, Hardingham TE (1992) Increased release of matrix components from articular cartilage in experimental canine osteoarthritis. J Orthop Res 10:350–358

    Article  CAS  PubMed  Google Scholar 

  41. Rubenstein JD, Kim JK, Morova-Protzner I, Stanchev PL, Henkelman RM (1993) Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology 188:219–226

    Article  CAS  PubMed  Google Scholar 

  42. Spahn G, Klinger HM, Baums M, Pinkepank U, Hofmann GO (2011) Reliability in arthroscopic grading of cartilage lesions: results of a prospective blinded study for evaluation of inter-observer reliability. Arch Orthop Trauma Surg 131:377–381

    Article  PubMed  Google Scholar 

  43. Spahn G, Muckley T, Klinger HM, Hofmann GO (2008) Whole-Organ Arthroscopic Knee Score (WOAKS). BMC Musculoskelet Disord 9:155-2474-9-155

  44. Stubendorff JJ, Lammentausta E, Struglics A, Lindberg L, Heinegard D, Dahlberg LE (2012) Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC. Osteoarthritis Cartilage 20:396–404

    Article  CAS  PubMed  Google Scholar 

  45. Tiderius CJ, Jessel R, Kim YJ, Burstein D (2007) Hip dGEMRIC in asymptomatic volunteers and patients with early osteoarthritis: the influence of timing after contrast injection. Magn Reson Med 57:803–805

    Article  PubMed  Google Scholar 

  46. Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L (2001) (Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med 46:1067–1071

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Regatte RR (2014) Quantitative mapping of human cartilage at 3.0T: parallel changes in T(2), T(1)rho, and dGEMRIC. Acad Radiol 21:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wiener E, Pfirrmann CW, Hodler J (2010) Spatial variation in T1 of healthy human articular cartilage of the knee joint. Br J Radiol 83:476–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from the Academy of Finland (Grant 260321) and the strategic funding from the University of Oulu.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Casula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casula, V., Hirvasniemi, J., Lehenkari, P. et al. Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sports Traumatol Arthrosc 24, 2046–2054 (2016). https://doi.org/10.1007/s00167-014-3286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3286-9

Keywords

Navigation