Skip to main content
Log in

Non-uniform displacement within the Achilles tendon during passive ankle joint motion

  • Ankle
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

An initial step in the understanding of Achilles tendon dynamics is to investigate the effects of passive motion, thereby minimising muscle activation and reducing internal joint forces. Internal tendon dynamics during passive ankle joint motion have direct implications for clinical rehabilitation protocols after Achilles tendon surgery. The aim of this study was to test the hypothesis that tendon tissue displacement is different in different layers of the Achilles tendon during controlled passive ankle joint movements.

Methods

Ultrasound imaging was conducted on the right Achilles tendon of nine healthy recreationally active males. Standardised isokinetic passive dorsi-plantar-flexion movements were performed with a total range of motion of 35°. The tendon was divided into superficial, central and deep layers in the resulting B-mode ultrasound images viewed in the sagittal plane. A block-matching speckle tracking algorithm was applied post-process, with kernels for the measurement of displacement placed in each of the layers.

Results

The mean (SD) displacement of the Achilles tendon during passive dorsiflexion was 8.4 (1.9) mm in the superficial layer, 9.4 (1.9) mm in the central portion and 10.4 (2.1) mm in the deep layer, respectively. In all cases, the movement of the deep layer of the tendon was greater than that of the superficial one (P < 0.01).

Conclusions

These results, achieved in vivo with ultrasonographic speckle tracking, indicated complex dynamic differences in different layers of the Achilles tendon, which could have implications for the understanding of healing processes of tendon pathologies and also of normal tendon function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amundsen B, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima J, Smiseth O, Slordahl S (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  2. Arndt A (1997) Entstehung und Auswirkungen assymmetrischer Belastung der menschlichen Achillessehne unter besonderer Berücksichtigung ihrer Morphologie. PhD thesis, [German] Deutsche Sporthochschule Köln, Germany

  3. Arndt A, Notermans H-P, Koebke J, Brüggemann G-P (1997) Zur Fasertextur der menschlischen Achillessehne—Eine Analyse durch Mazeration. Der Preparator 43:63–70

    Google Scholar 

  4. Arndt A, Komi P, Brüggemann G, Lukkariniemi J (1998) Individual muscle contributions to the in vivo Achilles tendon force. Clin Biomech 13:532–541

    Article  Google Scholar 

  5. Arndt A, Brüggemann GP, Koebke J, Segesser B (1999) Asymmetrical loading of the human triceps surae: I. Mediolateral force differences in the Achilles tendon. Foot Ankle Int 20:444–449

    PubMed  CAS  Google Scholar 

  6. Arnoczky S, Lavagnino M, Egerbacher M (2007) The mechanobiological etiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol 88:217–226

    Article  PubMed  Google Scholar 

  7. Bohs L, Trahey G (1991) A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans Biomed Eng 38:280–286

    Article  PubMed  CAS  Google Scholar 

  8. Bojsen-Møller J, Hansen P, Aagaard P, Svantesson U, Kjaer M, Magnusson S (2004) Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J App Physiol 97:1908–1914

    Article  Google Scholar 

  9. Christensen B, Dyrberg E, Aagaard P, Enehjelm S, Krogsgaard M, Kjaer M, Langberg H (2008) Effects of long-term immobilization and recovery on human triceps surae and collagen turnover in the Achilles tendon in patients with healing ankle fracture. J Appl Physiol 105:420–426

    Article  PubMed  CAS  Google Scholar 

  10. Cummins E, Anson B, Carr B, Wright R, Hauser E (1946) The structure of calcaneal tendon of Achilles in relation to orthopedic surgery. Surg Gynaecol Obst 83:107–116

    CAS  Google Scholar 

  11. de Boer M, Selby A, Atherton P, Smith K, Seynnes O, Maganaris C, Maffulli N, Movin T, Narici M, Rennie M (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 15:241–251

    Article  Google Scholar 

  12. Egerbacher M, Arnoczky S, Caballero O, Lavagnino M, Gardner K (2008) Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res 466:1562–1568

    Article  PubMed  Google Scholar 

  13. Finni T, Komi P, Lukkariniemi J (1998) Achilles tendon loading during walking: application of a novel optic fiber technique. Eur J Appl Physiol Occup Physiol 77:289–291

    Article  PubMed  CAS  Google Scholar 

  14. Finni T, Hodgson J, Lai A, Edgerton R, Sinha S (2003) Nonuniform strain of human soleus aponeurosis-tendon complex during submaximal voluntary contractions in vivo. J App Physiol 95:829–837

    Google Scholar 

  15. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S (1998) Fibrillar structure and mechanical properties of collagen. J Struct Biol 122:119–122

    Article  PubMed  CAS  Google Scholar 

  16. Froberg A, Komi P, Ishikawa M, Movin T, Arndt A (2009) Force in the Achilles tendon during walking with ankle foot orthosis. Am J Sports Med 37:1200–1207

    Article  PubMed  Google Scholar 

  17. Fukashiro S, Itoh M, Ichinose Y, Kawakami Y, Fukunaga T (1995) Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71:555–557

    Article  PubMed  CAS  Google Scholar 

  18. Fukunaga T, Kawakami Y, Kubo K, Kanehisa H (2002) Muscle and tendon interaction during human movements. Exercise Sport Sci Rev 30:106–110

    Article  Google Scholar 

  19. Haraldsson B, Aagaard P, Qvortrup K, Bojsen-Møller J, Krogsgaard M, Koskinen S, Kjaer M, Magnusson S (2008) Lateral force transmission between human tendon fascicles. Matrix Biol 27:86–95

    Article  PubMed  CAS  Google Scholar 

  20. Kawakami Y, Ichinose Y, Fukunaga T (1998) Architectural and functional features of human triceps surae muscles during contraction. J App Physiol 85:398–404

    CAS  Google Scholar 

  21. Kjaer M, Langberg H, Bojsen-Møller J, Koskinen SO, Mackey A, Heinemeier K, Holm L, Skovgaard D, Dossing S, Hansen M, Hansen P, Haraldsson B, Caroe I, Magnusson S (2008) Novel methods for tendon investigations. Disabil Rehab 30:1514–1522

    Article  CAS  Google Scholar 

  22. Komi PV, Fukashiro S, Jarvinen M (1992) Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 11:521–531

    PubMed  CAS  Google Scholar 

  23. Korstanje JW, Selles R, Stam H, Hovius S, Bosch J (2010) Development and validation of ultrasound speckle tracking to quantify tendon displacement. J Biomech 43:1373–1379

    Article  PubMed  Google Scholar 

  24. Loram I, Maganaris C, Lakie M (2006) Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length. J Appl Physiol 100:1311–1323

    Article  PubMed  Google Scholar 

  25. Maganaris C, Baltzopoulos V, Sargeant A (2000) In vivo measurement-based estimations of the human Achilles tendon moment arm. Eur J App Physiol 83:363–369

    Article  CAS  Google Scholar 

  26. Maganaris C, Paul J (1999) In vivo human tendon mechanical properties. J Physiol 521(1):307–313

    Article  PubMed  CAS  Google Scholar 

  27. Magnusson S, Narici M, Maganaris C, Kjaer M (2008) Human tendon behaviour and adaptation, in vivo. J Physiol 586:71–81

    Article  PubMed  CAS  Google Scholar 

  28. Minary-Jolandan M, Yu M (2009) Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity. Nanotechnology 20:85706

    Article  Google Scholar 

  29. Ofer N, Akselrod S, Nyska M, Werner M, Glaser E, Shabat S (2004) Motion-based tendon diagnosis using sequence processing of ultrasound images. J Orthop Res 22:1296–1302

    Article  PubMed  Google Scholar 

  30. Revell J, Mirmehdi M, McNally D (2005) Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences. IEEE Trans Med Imag 24:755–766

    Article  Google Scholar 

  31. Wren TA, Yerby SA, Beaupre GS, Carter DR (2001) Mechanical properties of the human Achilles tendon. Clin Biomech 16:245–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and the Karolinska Institute and from the Swedish Centre for Sports Research (CIF). Neither of the funding sources had any influence on the design, execution, analysis or reporting of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Arndt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, A., Bengtsson, AS., Peolsson, M. et al. Non-uniform displacement within the Achilles tendon during passive ankle joint motion. Knee Surg Sports Traumatol Arthrosc 20, 1868–1874 (2012). https://doi.org/10.1007/s00167-011-1801-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1801-9

Keywords

Navigation