Ada95.

Adams RA (1995) Calculus: a complete course, 3rd edn. Addison-Wesley, Reading

ADG+01.

Adams A, Dunstan M, Gottliebsen H, Kelsey T, Martin U, Owre S (2001) Computer algebra meets automated theorem proving: integrating maple and PVS. In: Boulton RJ, Jackson PB (eds) 14th international conference on theorem proving in higherOrder logics. Lecture notes in computer science, vol 2152. Springer-Verlag, pp 27–42

AGLM99a.

Adams AA, Gottliebsen H, Linton SA, Martin U (1999) Automated theorem proving in support of computer algebra: symbolic definite integration as a case study. In: Dooley S (ed) ISSAC ’99: proceedings of the 1999 international symposium on symbolic and algebraic computation. Vancouver, British Columbia, 1999. Simon Fraser University, ACM Press, pp 253–260

AGLM99b.

Adams AA, Gottliebsen H, Linton SA, Martin U (1999) VSDITLU: a verified symbolic definite integral table look-up. In: Ganzinger H (ed) Automated deduction—CADE-16. Lecture notes in artificial intelligence, vol 1632. Trento, Italy, 1999. ITC-irst, Springer-Verlag, pp 112–126

AP08.

Akbarpour B, Paulson LC (2008) Metitarski: an automatic prover for the elementary functions. In: Autexier S, Campbell J, Rubio J, Sorge V, Suzuki M, Wiedijk F (eds) AISC/MKM/Calculemus Lecture notes in computer science, vol 5144. Springer, pp 217–231

Art64.

Artin E (1964) The gamma function. Holt, Rinehart and Winston, Inc, New York

MATHBEH+03.

Brown CW, Encarnacin MJ, Hong H, Johnson J, Werner Kr, Liska R, Mccallum S (2003) QEPCAD B: a program for computing with semi-algebraic sets using cads. SIGSAM Bull 37:108

BHC95.

Ballarin C, Homann K, Calmet J (1995) Theorems and algorithms: an interface between Isabelle and Maple. In: ISSAC, pp 150–157

BKM01.

Bosgra OH, Kwakernaak H, Meinsma G (2001) Design methods for control systems: notes for a course of the Dutch Institute of Systems and Control, Winter term 2001–2002. Department of Systems, Signals and Control, University of Twente

BM06.

Boldo S, Muñoz C (2006) A formalization of floating-point numbers in PVS. Report NIA Report No. 2006-01, NASA/CR-2006-214298, NIA-NASA Langley, National Institute of Aerospace, Hampton, VA

But.

CGBK04.

Carreño V, Gottliebsen H, Butler R, Kalvala S (2004) Formal modeling and analysis of a preliminary small aircraft transportation system (SATS) concept. Technical Report NASA/TM-2004-21, NASA Langley Research Center, NASA LaRC, Hampton VA 23681-2199, USA

CM00.

Carreño V, Muñoz C Aircraft trajectory modeling and alerting algorithm verification. In: Harrison and Aagaard , pp 90–105

CM05.

Carreño V, Muñoz C (2005) Safety verification of the Small Aircraft Transportation System concept of operations. In: Proceedings of the AIAA 5th aviation, technology, integration, and operations conference, AIAA-2005-7423. Arlington, Virginia

DB01.

Dorf RC, Bishop RH (2001) Modern control systems, 9th edn. Prentice-Hall, Englewood Cliffs

dMOR+05.

de Moura L, Owre S, Rue H, Rushby J, Shankar N (2005) Integrating verification components.

http://www.csl.sri.com/cgi-bin/rushby/ps2pdf.pl?~rushby/papers/vstte05
Dut96.

Dutertre B (1996) Elements of mathematical analysis in PVS. In: von Wright J, Grundy J, Harrison J (eds) Theorem proving in higher order logics: 9th international conference. Lecture notes in computer science, vol. 1125. Springer-Verlag, pp 141–156

Fle00.

Fleuriot JD On the mechanization of real analysis in Isabelle/HOL. In: Harrison and Aagaard , pp 146–162

For.

GHK+80.

Gierz G, Hofmann KH, Keimel K, Lawson JD, Mislove M, Scott DS (1980) A compendium of continuous lattices (CCL). Springer-Verlag, Berlin

CrossRefGon.

Gonthier G A computer-checked proof of the Four Colour Theorem.

http://research.microsoft.com/~gonthier/4colproof.pdf
Got00.

Gottliebsen H Transcendental functions and continuity checking in PVS. In: Harrison and Aagaard , pp 198–215

Got01.

Gottliebsen H (2001) Automated theorem proving for mathematics: real analysis in PVS. PhD thesis, University of St Andrews

GS.

Gottliebsen H, So CM The Maple–PVS interface.

http://www.dcs.qmul.ac.uk/~hago/Maple-PVS/
HA00.

Harrison J, Aagaard M (eds) (2000) In: Theorem proving in higher order logics: 13th international conference, TPHOLs 2000. Lecture notes in computer science, vol 1869. Springer-Verlag

Hal.

Har98.

Harrison J (1998) Theorem proving with the real numbers. Springer-Verlag, Berlin

CrossRefMATHHar00.

Harrison J Formal verification of IA-64 division algorithms. In: Harrison and Aagaard , pp 234–251

Har06.

Hardy R (2006) Formal methods for control engineering: a validated decision procedure for Nichols plot analysis. PhD thesis, University of St Andrews

Jac02.

Jacobi C (2002) Formal verification of a fully IEEE compliant floating point unit. PhD thesis, University of the Saarland, 2002.

http://engr.smu.edu/~seidel/research/diss-jacobi.ps.gz
KS.

Kemmerly GT, Syrett NE Small aircraft transportation system (SATS).

http://sats.nasa.gov/main.html
Lig06.

Lightfoot O (2006) A real arithmetic test suite for theorem provers. In: 13th workshop on automated reasoning. ARW, pp 21–23

Map12.

Maplesoft (2012) The maple documentation center.

http://www.maplesoft.com/documentation_center/
Mar96.

Marker D (1996) Model theory and exponentiation. Not Am Math Soc 43: 753–759

MathSciNetMATHML05.

Muñoz C, Lester D (2005) Real number calculations and theorem proving. In: Hurd J, Melham T (eds) Proceedings of the 18th international conference on theorem proving in higher order logics, TPHOLs 2005. Lecture notes in computer science, vol 3603. Oxford, UK, 2005. Springer-Verlag, pp 195–210

MLK98.

Moore JS, Lynch TW, Kaufmann M (1998) A mechanically checked proof of the AMD5

_{K}86

^{TM} floating point division program. IEEE Trans Comput 47(9): 913–926

MathSciNetCrossRefMM.

Muñoz C, Mayero M Real automation in the field.

http://research.nianet.org/~munoz/Field/
NT93.

Oga97.

Ogata K (1997) Modern control engineering, 3rd edn. Prentice-Hall, Englewood Cliffs

ORS92.

Owre S, Rushby JM, Shankar N (1992) PVS: a prototype verification system. In: Kapur D (ed) 11th international conference on automated deduction (CADE). Lecture notes in artificial intelligence, vol 607. Saratoga, NY, June 1992. Springer-Verlag, pp 748–752

Pra00.

Pratt RW (ed) (2000) Flight control systems: practical issues in design and implementation. IEE control engineering series, vol 57. The Institution of Electrical Engineers. Copublished by The American Institute of Aeronautics and Astronautics

Rus99.

Russinoff DM (1999) A mechanically checked proof of correctness of the AMD K5 floating point square root microcode. Form Methods Syst Des. 14(1): 75–125

CrossRefSpi73.

Spivak M (1973) Calculus. Addison-Wesley, Reading

TM.

Inc. The Mathworks. MATLAB and Simulink.

http://www.mathworks.com/
vBJ77.

van Benthem Jutting LS (1977) Checking Landau’s “Grundlagen” in the AUTOMATH system. PhD thesis, Eindhoven University of Technology

Vit03.

Di Vito BL (2003) Strategy-enhanced interactive proving and arithmetic simplification for PVS. In: 1st international workshop on design and application of strategies/tactics in higher order logics (STRATA 2003). Rome, Italy