Skip to main content
Log in

Correspondence between a phase-field theory and a sharp-interface theory for crystal growth

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A matched asymptotic analysis is used to show that, under certain constitutive hypotheses and a particular scaling, a recently developed phase-field theory corresponds to a sharp-interface theory for crystal growth that accounts for orientation dependence in the crystalline surface energy density as well as orientation and surface normal velocity dependence in the crystalline surface mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor JE, Cahn JW, Handwerker CA (1992) Geometrie modeis of crystal growth, Acta Metallurgica et Materiala 40, 1443–1474

    Article  Google Scholar 

  2. Fried E, Gurtin ME (1993) Continuum theory of thermally induced phase transitions based on an order parameter, Physica D 68 326–343

    Article  MATH  MathSciNet  Google Scholar 

  3. Hillert M (1969) The role of interfaces in phase transformations, in: The Mechanism of Phase Transformations in Crystalline Solids, The Institute of Metals, London

    Google Scholar 

  4. Owen WS, Schoen FJ, Srinivasan GR (1968) The growth of a plate of martensite, in: Phase Transformations, American Society for Metals, Metals Park

    Google Scholar 

  5. Cahn JW, Hillig WB, Sears GW (1964) The molecular mechanism of solidification, Acta Metallurgica 12 1421–1439

    Article  Google Scholar 

  6. Gurtin ME (1995) The nature of configurational forces, Archive for Rational Mechanics and Analysis 131, 67–100

    Article  MATH  MathSciNet  Google Scholar 

  7. Gurtin ME (1993) Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Gurtin ME (1988) Multiphase thermomechanics with interfacial strueture 1. Heat conduetion and the capillary balance law, Archive for Rational Mechanics and Analysis 104, 195–221

    Article  MATH  MathSciNet  Google Scholar 

  9. Gurtin ME (1986) On the two-phase Stefan problem with interfacial energy and entropy, Archive for Rational Mechanics and Analysis 96, 199–241

    MATH  MathSciNet  Google Scholar 

  10. Gurtin ME (1993) The dynamics of solid-solid phase transitions 1. Coherent transitions, Archive for Rational Mechanics and Analysis 123, 305–335

    Article  MATH  MathSciNet  Google Scholar 

  11. Oseen CW (1993) The theory of liquid crystals, Transactions of the Faraday Society 29, 883–899

    Article  Google Scholar 

  12. Ericksen JL (1960) Anisotropie fluids, Archive for Rational Mechanics and Analysis 4, 231–237

    Article  MATH  MathSciNet  Google Scholar 

  13. Ericksen JL (1961) Conservation laws for liquid crystals, Transactions of the Society of Rheology 5, 23–34

    Article  MathSciNet  Google Scholar 

  14. Capriz P (1989) Continua with Microstructure, Springer-Verlag, New York

    MATH  Google Scholar 

  15. Fried E, Gurtin ME (1996) A phase-field theory for solidification based on a general anisotropic sharp-interface theory with interfacial energy and entropy, Physica D 91, 143–181

    Article  MATH  MathSciNet  Google Scholar 

  16. Rubinstein J, Sternberg P, Keller JB (1989) Fast reaction, slow diffusion, and curve shortening, SlAM Journal on Applied Mathematics 46, 116–133

    Article  MathSciNet  Google Scholar 

  17. de Mottoni P, Schatzman M (1989) Evolution geometrique d’interfaces, Comptes Rendus de L’Academy des Sciences Paris 309, 453–458

    MATH  Google Scholar 

  18. Bronsard L, Kohn RV (1991) Motion by mean curvature as the Singular limit of Ginzburg-Landau dynamics. Journal of Differential Equations 90, 211–237

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen X (1992) Generation and propagation of the interface for reaction-diffusion equations, Journal of Differential Equations 96, 116–141

    Article  MATH  MathSciNet  Google Scholar 

  20. Evans LC, Soner HM, Souganidis PE (1992) Phase transitions and generalized motion by mean curvature, Communications on Pure and Applied Mathematics 45, 1097–1123

    Article  MATH  MathSciNet  Google Scholar 

  21. Soner HM Ginzburg-Landau equation and motion by mean curvature 1. Convergence, Journal ofGeometry and Analysis, in press

  22. Nochetto RH, Paolini M, Rovida S, Verdi C (1993) Variational approximation of the geometric motion of fronts, in: Motion by Mean Curvature and Related Topics (Buttazzo G, Visintin A, Editors), Grutyer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, E. Correspondence between a phase-field theory and a sharp-interface theory for crystal growth. Continuum Mech. Thermodyn 9, 33–60 (1997). https://doi.org/10.1007/s001610050054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001610050054

Keywords

Navigation