Skip to main content
Log in

Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Comprehensive characterisation of the interrelation between the peripancreatic adipose tissue and the pancreatic islets promises novel insights into the mechanisms that regulate beta cell adaptation to obesity. Here, we sought to determine the main pathways and key molecules mediating the crosstalk between these two tissues during adaptation to obesity by the way of an integrated inter-tissue, multi-platform analysis.

Methods

Wistar rats were fed a standard or cafeteria diet for 30 days. Transcriptomic variations by diet in islets and peripancreatic adipose tissue were examined through microarray analysis. The secretome from peripancreatic adipose tissue was subjected to a non-targeted metabolomic and proteomic analysis. Gene expression variations in islets were integrated with changes in peripancreatic adipose tissue gene expression and protein and metabolite secretion using an integrated inter-tissue pathway and network analysis.

Results

The highest level of data integration, linking genes differentially expressed in both tissues with secretome variations, allowed the identification of significantly enriched canonical pathways, such as the activation of liver/retinoid X receptors, triacylglycerol degradation, and regulation of inflammatory and immune responses, and underscored interaction network hubs, such as cholesterol and the fatty acid binding protein 4, which were unpredicted through single-tissue analysis and have not been previously implicated in the peripancreatic adipose tissue crosstalk with beta cells.

Conclusions/interpretation

The integrated analysis reported here allowed the identification of novel mechanisms and key molecules involved in peripancreatic adipose tissue interrelation with beta cells during the development of obesity; this might help the development of novel strategies to prevent type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CM:

Non-supplemented culture medium

DIGE:

Differential gel electrophoresis

E-WAT:

Epididymal white adipose tissue

FABP4:

Fatty acid binding protein 4

IPA:

Ingenuity pathway analysis

LXR:

Liver X receptor

NAD:

Nicotinamide adenine dinucleotide

OB:

Wistar rats fed a high-energy cafeteria diet for 30 days

PM-WAT:

Peripancreatic white adipose tissue

q-PCR:

Quantitative real-time PCR

RXR:

Retinoid X receptor

STD:

Wistar rats fed a standard chow diet for 30 days

TCA:

Tricarboxylic acid

References

  1. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  CAS  PubMed  Google Scholar 

  2. Yudkin JS, Eringa E, Stehouwer CD (2005) "Vasocrine" signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365:1817–1820

    Article  PubMed  Google Scholar 

  3. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed Central  PubMed  Google Scholar 

  4. Palau N, Rebuffat SA, Altirriba J et al (2012) Role of IGFBP-3 in the regulation of beta-cell mass during obesity: adipose tissue/beta-cell cross talk. Endocrinology 153:177–187

    Article  CAS  PubMed  Google Scholar 

  5. Rebuffat SA, Olivera JM, Altirriba J et al (2013) Downregulation of Sfrp5 promotes beta cell proliferation during obesity in the rat. Diabetologia 56:2446–2455

    Article  CAS  PubMed  Google Scholar 

  6. Claret M, Corominola H, Canals I et al (2005) Tungstate decreases weight gain and adiposity in obese rats through increased thermogenesis and lipid oxidation. Endocrinology 146:4362–4369

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez-Alvarez J, Barbera A, Nadal B et al (2004) Stable and functional regeneration of pancreatic beta cell population in nSTZ-rats treated with tungstate. Diabetologia 47:470–477

    Article  CAS  PubMed  Google Scholar 

  8. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  9. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  CAS  PubMed  Google Scholar 

  10. Barcelo-Batllori S, Kalko SG, Esteban Y, Moreno S, Carmona MC, Gomis R (2008) Integration of DIGE and bioinformatics analyses reveals a role of the antiobesity agent tungstate in redox and energy homeostasis pathways in brown adipose tissue. Mol Cell Proteomics 7:378–393

    Article  CAS  PubMed  Google Scholar 

  11. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  CAS  PubMed  Google Scholar 

  12. Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432

    Article  CAS  PubMed  Google Scholar 

  13. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  14. Papazoglu M, Fiehn O (2009) Metabolite identification in blood plasma using GC/MS and the Agilent Fiehn GC-MS Metabolomics RTL Library. Agilent Application Note. Available from http://www.chem.agilent.com/Library/applications/5990-3638en_lo%20CMS.pdf. Accessed November 2012

  15. Hanzu FA, Vinaixa M, Papageorgiou A et al (2013) Obesity rather than regional fat depots marks the metabolomic pattern of adipose tissue: an untargeted metabolomic approach. Obesity (Silver Spring). doi:10.1002/oby.20541

    Google Scholar 

  16. Brugnara L, Vinaixa M, Murillo S, et al. Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS ONE 7:e40600

  17. Sampey BP, Vanhoose AM, Winfield HM et al (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring) 19:1109–1117

    Article  CAS  Google Scholar 

  18. Joseph SB, Tontonoz P (2003) LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol 3:192–197

    Article  CAS  PubMed  Google Scholar 

  19. Alkhouri N, Gornicka A, Berk MP et al (2010) Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J Biol Chem 285:3428–3438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Roncari DA, Lau DC, Kindler S (1981) Exaggerated replication in culture of adipocyte precursors from massively obese persons. Metabolism 30:425–427

    Article  CAS  PubMed  Google Scholar 

  21. Lopez IP, Marti A, Milagro FI et al (2003) DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes Res 11:188–194

    Article  CAS  PubMed  Google Scholar 

  22. Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 276:34167–34174

    Article  CAS  PubMed  Google Scholar 

  23. Keophiphath M, Rouault C, Divoux A, Clement K, Lacasa D (2010) CCL5 promotes macrophage recruitment and survival in human adipose tissue. Arterioscler Thromb Vasc Biol 30:39–45

    Article  CAS  PubMed  Google Scholar 

  24. Kitade H, Sawamoto K, Nagashimada M et al (2012) CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes 61:1680–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kwon EY, Shin SK, Cho YY et al (2012) Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity. BMC Genomics 13:450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Huber J, Kiefer FW, Zeyda M et al (2008) CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 93:3215–3221

    Article  CAS  PubMed  Google Scholar 

  27. Rasouli N, Kern PA (2008) Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 93(Suppl 1):S64–S73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lumeng CN (2013) Innate immune activation in obesity. Mol Aspects Med 34:12–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ehses JA, Ellingsgaard H, Boni-Schnetzler M, Donath MY (2009) Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol Biochem 115:240–247

    Article  CAS  PubMed  Google Scholar 

  30. Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370

    Article  CAS  PubMed  Google Scholar 

  31. Lan H, Rabaglia ME, Stoehr JP et al (2003) Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes 52:688–700

    Article  CAS  PubMed  Google Scholar 

  32. Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Zhang L, Meshinchi S et al (2006) Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55:2965–2973

    Article  CAS  PubMed  Google Scholar 

  34. Nadler ST, Stoehr JP, Schueler KL, Tanimoto G, Yandell BS, Attie AD (2000) The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci U S A 97:11371–11376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. van de Woestijne AP, Monajemi H, Kalkhoven E, Visseren FL (2011) Adipose tissue dysfunction and hypertriglyceridemia: mechanisms and management. Obes Rev 12:829–840

    Article  PubMed  Google Scholar 

  36. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Perez-Perez R, Garcia-Santos E, Ortega-Delgado FJ et al (2012) Attenuated metabolism is a hallmark of obesity as revealed by comparative proteomic analysis of human omental adipose tissue. J Proteome 75:783–795

    Article  CAS  Google Scholar 

  39. Kalaany NY, Mangelsdorf DJ (2006) LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 68:159–191

    Article  CAS  PubMed  Google Scholar 

  40. Venteclef N, Jakobsson T, Steffensen KR, Treuter E (2011) Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends Endocrinol Metab 22:333–343

    Article  CAS  PubMed  Google Scholar 

  41. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P (2003) Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 9:213–219

    Article  CAS  PubMed  Google Scholar 

  42. Brunham LR, Kruit JK, Verchere CB, Hayden MR (2008) Cholesterol in islet dysfunction and type 2 diabetes. J Clin Invest 118:403–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was developed at the Centro Esther Koplowitz, Barcelona, Spain. We acknowledge the Unit of Proteomics from the Centres Científics i Tecnològics-Universitat de Barcelona (CCiT-UB, Barcelona, Spain), a member of ProteoRed network, for technical help. We acknowledge the Genomics Unit of IDIBAPS (Barcelona, Spain), where part of the transcriptomic analysis was carried out, for technical help. We acknowledge the Bioinformatics Unit of IDIBAPS (Barcelona, Spain), where the statistical transcriptomics and IPA analyses were carried out, for bioinformatics resources support.

Funding

This work was supported by grants from the Ministerio de Ciencia y Innovación (Spain), SAF2010-19527, and from Generalitat de Catalunya (Spain), 2009SGR1426. CIBERDEM is an initiative of Instituto de Salud Carlos III (Madrid, Spain). RM was a recipient of a grant from the European Commission for financial support (Marie Curie Grant - FP7 PEOPLE-2007-3-1-IAPP-218130).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

RM, SR and RGomis designed the study. All authors contributed to acquisition or interpretation of data, drafted the article or revised it critically for important intellectual content of the paper. RM is responsible for the integrity of the work as a whole. All authors approved the final version of the manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Gomis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(PDF 58 kb)

ESM Table 2

(PDF 79 kb)

ESM Table 3

(PDF 68 kb)

ESM Table 4

(PDF 32 kb)

ESM Table 5

(PDF 31 kb)

ESM Table 6

(PDF 52 kb)

ESM Fig. 1

2D-DIGE differential analysis of adipose tissue secretomes from OB vs STD rats. Representative image gel evidencing the 36 spot locations selected for excision after applying the statistical analysis (Two-way ANOVA and the two-tailed Student’s T-test for paired samples, p-value<0.05). (PDF 2939 kb)

ESM Fig. 2

Single-tissue, single-platform pathway mapping. PM-WAT (a) and pancreatic islets (b) transcriptomics integrative pathway mapping and PM-WAT secretome proteomics (c) and metabolomics (d) integrative pathway mapping (highest score network), considering only direct interactions. (PDF 546 kb)

ESM Fig. 3

Inter-tissue, multi-platform integrative pathway mapping, considering only direct interactions: (a) Pancreatic transcriptomics data superimposed on the secretome metabolite network (b) Pancreatic islets transcriptomics data and PM-WAT secretome proteomics data superimposed on the PM-WAT secretome metabolite network. (PDF 386 kb)

ESM Fig. 4

Gene expression changes in islet immune and inflammatory response signalling due to 30 day (a) and 6 month (b) cafeteria diet-induced obesity. Real-time PCR results for statistically significant genes: black bars = STD group; white bars = OB group. The expression of each gene was normalized with the constitutive expression of the gene Gadph. All values are presented as mean ± SEM from 6 to 10 animals per group. *P < 0.05, **P < 0.01 and ***P < 0.005. (PDF 369 kb)

ESM Fig. 5

(PDF 22162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malpique, R., Figueiredo, H., Esteban, Y. et al. Integrative analysis reveals novel pathways mediating the interaction between adipose tissue and pancreatic islets in obesity in rats. Diabetologia 57, 1219–1231 (2014). https://doi.org/10.1007/s00125-014-3205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3205-0

Keywords

Navigation