Skip to main content
Log in

Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In the allotetraploid, Festuca pratensis Huds. (2n = 4x = 28) × Lolium perenne L. (2n = 4x = 28) the balance of chromatin, as determined by GISH, changes over successive generations of open pollination in favour of L. perenne. There is extensive recombination between chromosomes of the two parental genomes, as well as substitution of whole Festuca chromosomes by whole Lolium chromosomes. The total number of Lolium chromosomes increased from a mean 14.36 in the F2 to 16.26 in the F6, and the total number of Festuca chromosomes decreased correspondingly from a mean of 13.57 to a value of 11.56. The number of recombinant chromosomes and recombination breakpoints per genotype also increased from generation to generation, although the respective values of both characters were higher for Festuca (0.86–8.41 and 1.14–15.22) than for Lolium (0.68–4.59 and 0.68–6.0). The proportion of total genome length contributed by the L. perenne chromatin increased from about 50% in F2 to 59.5% in F6. The results are based on the sample of 134 plants studied (26–28 plants per generation), and are discussed in terms of the dominance of Lolium chromosomes over those of Festuca, and possible mechanisms underlying this phenomenon of chromatin substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Armstead IP, Bollard A, Morgan WG, Harper JA, King IP, Jones RN, Forster JW, Hayward MD, Thomas HM (2001) Genetic and physical analysis of a single Festuca pratensis chromosome segment substitution in Lolium perenne. Chromosoma 110:52–57

    Article  PubMed  CAS  Google Scholar 

  • Canter PH, Pašakinskienė I, Jones RN, Humphreys MW (1999) Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv. Prior (2n = 4x = 28). Theor Appl Genet 98:809–814

    Article  Google Scholar 

  • Casler MD, Pitts PG, Rose-Fricker C, Bilkey PC, Wipff JK (2001) Registration of ‘Spring Green’ Festulolium. Crop Sci 41:1365–1366

    Article  Google Scholar 

  • Fojtik A (1994) Methods of grass improvement used at the plant breeding station Hladké Životice. Genet Pol 35A:25–31

    Google Scholar 

  • Ghesquière M, Zwierzykowski Z, Poisson C, Jadas-Hécart J (1993) Amphitetraploid Festulolium (Lolium multiflorum × Festuca arundinacea var. glaucescens): chromosome stability and female fertility over intercrossing generations. In: Proceedings of the XVIIth International Grassland Congress, Palmerston North, New Zealand, 451–453, February 1993

  • Ghesquière M, Emile J-C, Jadas-Hécart J, Mousset C, Traineau R, Poisson C (1996) First in vivo assessment of feeding value in Festulolium hybrids using Festuca arundinacea var. glaucescens and selection for palatability. Plant Breed 115:238–244

    Article  Google Scholar 

  • Grønnerød S, Fjelldheim S, Grieg Z, Jørgensen Ø, Larsen A, Østrem L, Humphreys MW, Rognli OA (2004) Application of AFLP and GISH techniques for identification of Festuca chromosome segments conferring winter hardiness in a Lolium perenne × Festuca pratensis population. In: Hopkins A, Wang ZY, Mian R, Sledge M, Backer RE (eds) Molecular breeding of forage and turf. Developments in plant breeding 11:81–86

  • Humphreys MW, Pašakinskienė I (1996) Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534

    Article  Google Scholar 

  • Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z, Ghesquière M (1995) Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75:171–174

    Article  Google Scholar 

  • Jauhar PP (1975) Chromosome relationships between Lolium and Festuca (Gramineae). Chromosoma 52:103–121

    Article  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Pašakinskienė I (2005) Genome conflict in the Gramineae. New Phytol 165:391–410

    Article  PubMed  Google Scholar 

  • King IP, Morgan WG, Armstead IP, Harper JA, Hayward MD, Bollard A, Nash JV, Forster JW, Thomas HM (1998) Introgression mapping in the grasses. I. Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81:462–467

    Article  CAS  Google Scholar 

  • King J, Armstead IP, Donnison IS, Thomas HM, Jones RN, Kearsey MJ, Roberts LA, Thomas A, Morgan WG, King IP (2002a) Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:315–324

    CAS  Google Scholar 

  • King J, Roberts LA, Kearsey M, Thomas HM, Jones RN, Huang L, Armstead IP, Morgan WG, King IP (2002b) A demonstration of the 1:1 correspondence between chiasma frequency and recombination. Genetics 161:307–314

    CAS  Google Scholar 

  • Kopecky D, Lukaszewski AJ, Doležel J (2005a) Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breed 124:454–458

    Article  Google Scholar 

  • Kopecky D, Lukaszewski AJ, Gibeault V (2005b) Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding. Crop Sci 45:274–281

    Google Scholar 

  • Kosmala A, Zwierzykowski Z, Gąsior D, Rapacz M, Zwierzykowska E, Humphreys MW (2006) GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251

    Article  PubMed  CAS  Google Scholar 

  • Leśniewska A, Ponitka A, Ślusarkiewicz-Jarzina A, Zwierzykowska E, Zwierzykowski Z, James A, Thomas H, Humphreys MW (2001) Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilise rare gene combinations for grass breeding. Heredity 86:167–176

    Article  PubMed  Google Scholar 

  • Lewis EJ (1980) Chromosome pairing in tetraploid hybrids between Lolium perenne and L. multiflorum. Theor Appl Genet 58:137–143

    Article  Google Scholar 

  • Lewis EJ, Tyler BF, Chorlton KH (1973) Development of Lolium-Festuca hybrids. Rep Welsh Plant Breed Station for 1972. Cambrian News, Aberystwyth, pp 34–37

  • Netzband K (1991) Breeding of tetraploid Festulolium fodder grasses with different maturity. In: Proceedings of the 16th EUCARPIA Fodder Crops Section Meeting, Wageningen, The Netherlands, 47–48, November 1990

  • Pašakinskienė I, Jones RN (2003) Challenging genome integrity. Biologija 1:3–9

    Google Scholar 

  • Pašakinskienė I, Jones RN (2005) A decade of “chromosome painting” in Lolium and Festuca. Cytogenet Genome Res 109:393–399

    Article  PubMed  CAS  Google Scholar 

  • Sulinowski S, Wiśniewska H, Sękowska K (1982) Frequency of spontaneous polyploids in Lolium perenne and Festuca pratensis. In: Proceedings of the EUCARPIA Meeting of the Fodder Crops Section, Aberystwyth, Wales, UK, 55–59, September 1982

  • Thomas H, Humphreys MO (1991) Progress and potential of interspecific hybrids of Lolium and Festuca. J Agric Sci 117:1–8

    Article  Google Scholar 

  • Thomas HM, Morgan WG, Meredith MR, Humphreys MW, Thomas H, Leggett JM (1994) Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridisation. Theor Appl Genet 88:909–913

    Article  Google Scholar 

  • Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with the future–combining the attributes of Lolium and Festuca. Euphytica 133:19–26

    Article  Google Scholar 

  • Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassland Sci 51:89–106

    Article  CAS  Google Scholar 

  • Zwierzykowski Z (2004) Amphiploid and introgression breeding within the Lolium-Festuca complex–achievements and perspectives. In: Yamada T, Takamizo T (eds) Development of a novel grass with environmental stress and high forage quality through intergeneric hybridization between Lolium and Festuca. NARO, Tsukuba, pp 17–29

    Google Scholar 

  • Zwierzykowski Z, Rybczyński JJ (1981) Studies on tetraploid hybrids of Lolium multiflorum Lam. (2n = 28) × Festuca pratensis Huds. (2n = 28): morphological characterization, fertility and chromosome number of hybrids in F1–F4 generations. Genet Pol 22:295–303

    Google Scholar 

  • Zwierzykowski Z, Jokś W, Naganowska B (1993) Amphitetraploid hybrids Festuca pratensis Huds. × Lolium multiflorum Lam. [= × Festulolium braunii (K. Richter) A. Camus]. Biul IHAR 188:61–69 (in Polish with English summary)

  • Zwierzykowski Z, Jokś W, Naganowska B (1994) Potential of tetraploid Festulolium (Festuca pratensis Huds. × Lolium multiflorum Lam.). In: Rognli OA, Solberg E, Schjeldrup I (eds) Breeding fodder crops for marginal conditions. Kluwer Academic Publishers, The Netherlands. Developments in Plant Breeding vol. 2, pp 299–300

  • Zwierzykowski Z, Lukaszewski JA, Leśniewska A, Naganowska B (1998a) Genomic structure of androgenic progeny of pentaploid hybrids, Festuca arundinacea × Lolium multiflorum. Plant Breed 117:457–462

    Article  Google Scholar 

  • Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ (1998b) Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328

    Article  Google Scholar 

  • Zwierzykowski Z, Lukaszewski AJ, Naganowska B, Leśniewska A (1999) The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42:720–726

    Article  Google Scholar 

  • Zwierzykowski Z, Zwierzykowska E, Kosmala A, Łuczak M, Jokś W (2003) Genome recombination in early generations of Festuca pratensis × Lolium perenne hybrids. In: Zwierzykowski Z, Surma M, Kachlicki P (eds) Application of novel cytogenetic and molecular techniques in genetics and breeding of the grasses. Institute of Plant Genetics PAS, Poznan, pp 63–69

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Włodzimierz Zwierzykowski, Michał Łuczak and Marcin Puślednik for their technical support; and The Leverhulme Trust Emeritus Fellowship for financial support for Professor Neil Jones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Zwierzykowski.

Additional information

Communicated by J. S. Heslop-Harrison

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwierzykowski, Z., Kosmala, A., Zwierzykowska, E. et al. Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne . Theor Appl Genet 113, 539–547 (2006). https://doi.org/10.1007/s00122-006-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0322-2

Keywords

Navigation