Skip to main content
Log in

Kortikale Repräsentation von Schmerz

Cortical representation of pain

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Entgegen der traditionellen Sichtweise, dass der zerebrale Kortex nicht an der Verarbeitung von Schmerz beteiligt sei, konnte in den letzten Jahrzehnten ein ausgedehntes kortikales Netzwerk Schmerz verarbeitender Areale gezeigt werden. Es umfasst insbesondere die primären (S1) und sekundären (S2) somatosensorischen Kortizes, den insulären Kortex und den vorderen zingulären Kortex (ACC). Diese Areale sind überwiegend parallel organisiert und verschiedenen qualitativen Aspekten der Schmerzwahrnehmung zuzuordnen. S1 ist mit der diskriminativen Komponente von Schmerz assoziiert, während S2 von besonderer Bedeutung für kognitive Aspekte der Schmerzwahrnehmung zu sein scheint. Dem Inselkortex wird eine entscheidende Rolle für die multimodale Integration und für autonome Reaktionen auf schmerzhafte Reize sowie schmerzbezogene Lern- und Gedächtnisvorgänge zugesprochen. Der ACC ist eng mit dem Schmerzaffekt und der Integration von Affekt, Kognition und motorischer Reaktion verbunden. Zudem konnten enge Assoziationen zwischen S1 und ersten Schmerz und ACC und zweiten Schmerz gezeigt werden. Diese Befunde belegen, wie in den letzten Jahren differenzierte Einblicke in die Entstehung von Schmerz im menschlichen Kortex gewonnen werden konnten.

Summary

Contrary to the traditional view that the cerebral cortex is not involved in pain perception an extensive cortical network associated with pain processing has been revealed during the past decades. This network consistently includes the primary (S1) and secondary somatosensory cortices (S2), the insular cortex, and the anterior cingulate cortex (ACC). These cortical areas are organized in parallel and contribute to different dimensions of pain experience. The S1 cortex is mainly involved in discriminative aspects of pain, while the S2 cortex seems to have an important role in cognitive aspects of pain perception. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in pain-related learning and memory. The ACC is closely related to pain affect and may subserve the integration of general affect, cognition, and response selection. Furthermore, first pain appears to be particularly related to activation of S1 whereas second pain is closely related to ACC activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14:6779–6795

    CAS  PubMed  Google Scholar 

  2. Augustine JR (1996) Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 22:229–244

    Article  CAS  PubMed  Google Scholar 

  3. Bornhovd K, Quante M, Glauche V et al. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 125:1326–1336

    Article  CAS  PubMed  Google Scholar 

  4. Buchel C, Bornhovd K, Quante M et al. (2002) Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22:970–976

    PubMed  Google Scholar 

  5. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    PubMed  Google Scholar 

  6. Bushnell MC, Duncan GH, Hofbauer RK et al. (1999) Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA 96:7705–7709

    Article  CAS  PubMed  Google Scholar 

  7. Caselli RJ (1993) Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43:762–771

    CAS  PubMed  Google Scholar 

  8. Casey KL, Morrow TJ, Lorenz J et al. (2001) Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. J Neurophysiol 85:951–959

    CAS  PubMed  Google Scholar 

  9. Chen JI, Ha B, Bushnell MC et al. (2002) Differentiating noxious- and innocuous-related acivation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 88:464–474

    PubMed  Google Scholar 

  10. Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    Article  CAS  PubMed  Google Scholar 

  11. Craig AD, Reiman EM, Evans A et al. (1996) Functional imaging of an illusion of pain. Nature 384:258–260

    Article  CAS  PubMed  Google Scholar 

  12. Davis KD, Taylor SJ, Crawley AP et al. (1997) Functional MRI of pain- and attention-related activations in the human cingulate cortex. J Neurophysiol 77:3370–3380

    CAS  PubMed  Google Scholar 

  13. Derbyshire SW, Jones AK, Gyulai F et al. (1997) Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain 73:431–445

    PubMed  Google Scholar 

  14. Derbyshire SW, Vogt BA, Jones AK (1998) Pain and stroop interference tasks activate separate processing modules in anterior cingulate cortex. Exp Brain Res 118:52–60

    Article  CAS  PubMed  Google Scholar 

  15. Disbrow E, Litinas E, Recanzone GH et al. (2002) Thalamocortical connections of the parietal ventral area (PV) and the second somatosensory area (S2) in macaque monkeys. Thalamus Relat Syst 1:289–302

    Article  CAS  Google Scholar 

  16. Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21

    Article  CAS  PubMed  Google Scholar 

  17. Dong WK, Chudler EH, Sugiyama K et al. (1994) Somatosensory, multisensory, and task-related neurons in cortical area 7b (PF) of unanesthetized monkeys. J Neurophysiol 72:542–564

    CAS  PubMed  Google Scholar 

  18. Dong WK, Salonen LD, Kawakami Y et al. (1989) Nociceptive responses of trigeminal neurons in SII-7b cortex of awake monkeys. Brain Res 484:314–324

    Article  CAS  PubMed  Google Scholar 

  19. Foltz EL, White LE (1962) Pain „relief“ by frontal cingulumotomy. J Neurosurg 19:89–100

    CAS  PubMed  Google Scholar 

  20. Friedman DP, Murray EA, O’Neill JB et al. (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252:323–347

    CAS  PubMed  Google Scholar 

  21. Frot M, Mauguière F (2003) Dual representation of pain in the operculo-insular cortex in humans. Brain 126:438–450

    Article  PubMed  Google Scholar 

  22. Garraghty PE, Florence SL, Tenhula WN et al. (1991) Parallel thalamic activation of the first and second somatosensory areas in prosimian primates and tree shrews. J Comp Neurol 311:289–299

    CAS  PubMed  Google Scholar 

  23. Gelnar PA, Krauss BR, Sheehe PR et al. (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10:460–482

    Article  CAS  PubMed  Google Scholar 

  24. Gingold SI, Greenspan JD, Apkarian AV (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308:467–490

    CAS  PubMed  Google Scholar 

  25. Hanamori T, Kunitake T, Kato K et al. (1998) Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79:2535–2545

    CAS  PubMed  Google Scholar 

  26. Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Google Scholar 

  27. Hofbauer RK, Rainville P, Duncan GH et al. (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86:402–411

    CAS  PubMed  Google Scholar 

  28. Hurt RW, Ballantine HTJ (1974) Stereotactic anterior cingulate lesions for persistent pain: a report on 68 cases. Clin Neurosurg 21:334–351

    CAS  PubMed  Google Scholar 

  29. Hutchison WD, Davis KD, Lozano AM et al. (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405

    Article  CAS  PubMed  Google Scholar 

  30. Ito SI (1998) Possible representation of somatic pain in the rat insular visceral sensory cortex: a field potential study. Neurosci Lett 241:171–174

    Article  CAS  PubMed  Google Scholar 

  31. Iwamura Y (1998) Hierarchical somatosensory processing. Curr Opin Neurobiol 8:522–528

    CAS  PubMed  Google Scholar 

  32. Johansen JP, Fields HL, Manning BH (2001) The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA 98:8077–8082

    Article  CAS  PubMed  Google Scholar 

  33. Kenshalo DR, Iwata K, Sholas M et al. (2000) Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. J Neurophysiol 84:719–729

    CAS  PubMed  Google Scholar 

  34. Kenshalo DR, Willis WD (1991) The role of the cerebral cortex in pain sensation. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York, pp 153–212

  35. Lenz FA, Gracely RH, Zirh AT et al. (1997) The sensory-limbic model of pain memory. Pain Forum 6:22–31

    Google Scholar 

  36. Lenz FA, Rios M, Chau D et al. (1998) Painful stimuli evoke potentials recorded from the parasylvian cortex in humans. J Neurophysiol 80:2077–2088

    CAS  PubMed  Google Scholar 

  37. Lenz FA, Rios M, Zirh A et al. (1998) Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. J Neurophysiol 79:2231–2234

    CAS  PubMed  Google Scholar 

  38. Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain: a new conceptual model in pain. In: Kenshalo DRJ (ed) The skin senses. Thomas, Springfield, pp 423–443

  39. Mesulam MM, Mufson EJ (1985) The insula of Reil in man and monkey. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York, pp 179–226

  40. Ostrowsky K, Magnin M, Ryvlin P et al. (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cort 12:376–385

    Article  Google Scholar 

  41. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424

    Article  CAS  PubMed  Google Scholar 

  42. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Google Scholar 

  43. Petrovic P, Kalso E, Petersson KM et al. (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:1737–1740

    Article  CAS  PubMed  Google Scholar 

  44. Ploner M, Freund HJ, Schnitzler A (1999) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81:211–214

    Article  CAS  PubMed  Google Scholar 

  45. Ploner M, Gross J, Timmermann L et al. (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99:12444–12448

    Article  CAS  PubMed  Google Scholar 

  46. Ploner M, Schmitz F, Freund HJ et al. (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104

    Google Scholar 

  47. Ploner M, Schmitz F, Freund HJ et al. (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83:1770–1776

    CAS  PubMed  Google Scholar 

  48. Porro CA, Cettolo V, Francescato MP et al. (1998) Temporal and intensity coding of pain in human cortex. J Neurophysiol 80:3312–3320

    CAS  PubMed  Google Scholar 

  49. Rainville P, Duncan GH, Price DD et al. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    CAS  PubMed  Google Scholar 

  50. Schlereth T, Baumgartner U, Magerl W et al. (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20:441–454

    Article  PubMed  Google Scholar 

  51. Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17:592–603

    Article  CAS  PubMed  Google Scholar 

  52. Shi CJ, Cassell MD (1998) Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399:469–491

    Article  CAS  PubMed  Google Scholar 

  53. Stevens RT, London SM, Apkarian AV (1993) Spinothalamocortical projections to the secondary somatosensory cortex (SII) in squirrel monkey. Brain Res 631:241–246

    Article  CAS  PubMed  Google Scholar 

  54. Timmermann L, Ploner M, Haucke K et al. (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86:1499–1503

    CAS  PubMed  Google Scholar 

  55. Tolle TR, Kaufmann T, Siessmeier T et al. (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47

    CAS  PubMed  Google Scholar 

  56. Treede RD, Kenshalo DR, Gracely RH et al. (1999) The cortical representation of pain. Pain 79:105–111

    CAS  PubMed  Google Scholar 

  57. Turman AB, Ferrington DG, Ghosh S et al. (1992) Parallel processing of tactile information in the cerebral cortex of the cat: effect of reversible inactivation of SI on responsiveness of SII neurons. J Neurophysiol 67:411–429

    CAS  PubMed  Google Scholar 

  58. Vaccarino AL, Melzack R (1989) Analgesia produced by injection of lidocaine into the anterior cingulum bundle of the rat. Pain 39:213–219

    Article  CAS  PubMed  Google Scholar 

  59. Vogel H, Port JD, Lenz FA et al. (2003) Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J Neurophysiol 89:3051–3060

    PubMed  Google Scholar 

  60. Vogt BA, Derbyshire S, Jones AK (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8:1461–1473

    CAS  PubMed  Google Scholar 

  61. Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 122:223–235

    CAS  PubMed  Google Scholar 

  62. Zhang ZH, Dougherty PM, Oppenheimer SM (1999) Monkey insular cortex neurons respond to baroreceptive and somatosensory convergent inputs. Neuroscience 94:351–360

    Article  CAS  PubMed  Google Scholar 

  63. Zubieta JK, Smith YR, Bueller JA et al. (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293:311–315

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ploner.

Additional information

Die Arbeit der Autoren wurde unterstützt von der DFG, der Volkswagen-Stiftung und der Ute-Huneke-Stiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ploner, M., Schnitzler, A. Kortikale Repräsentation von Schmerz. Nervenarzt 75, 962–969 (2004). https://doi.org/10.1007/s00115-004-1739-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-004-1739-y

Schlüsselwörter

Keywords

Navigation