Skip to main content
Log in

Juvenile morphology in baleen whale phylogeny

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bisconti M (2014) Anatomy of a new cetotheriid genus and species from the Miocene of Herentals, Belgium, and the phylogenetic and palaeobiogeographical relationships of Cetotheriidae s.s. (Mammalia, Cetacea, Mysticeti). J Syst Palaeontol: 1–19 doi:10.1080/14772019.2014.890136

  • Bisconti M, Lambert O, Bosselaers M (2013) Taxonomic revision of Isocetus depauwi (Mammalia, Cetacea, Mysticeti) and the phylogenetic relationships of archaic ‘cetothere’ mysticetes. Palaeontology 56:95–127

    Article  Google Scholar 

  • Campione NE, Brink KS, Freedman EA, McGarrity CT, Evans DC (2013) ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the two medicine formation of Montana: implications for hadrosauroid diversity in the latest cretaceous (Campanian-maastrichtian) of western North America. Palaeobiodiversity Palaeoenvironments 93:65–75

    Google Scholar 

  • Darwin C (1859) On the origin of species: by means of natural selections or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • de Muizon C (1993) Walrus-like feeding adaptation in a new cetacean from the Pliocene of Peru. Nature 365:745–748

    Article  Google Scholar 

  • Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57:15–37

    Article  PubMed  Google Scholar 

  • El Adli JJ, Deméré TA, Boessenecker RW (2014) Herpetocetus morrowi (Cetacea: Mysticeti), a new species of diminutive baleen whale from the upper Pliocene (Piacenzian) of California, USA, with observations on the evolution and relationships of the Cetotheriidae. Zool J Linnean Soc 170:400–466

    Article  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. Columbia University, New York

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman, Cooper & Company, California, pp 82–115

    Google Scholar 

  • Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc R Soc B 273:2955–2963

    Article  PubMed Central  PubMed  Google Scholar 

  • Fitzgerald EMG (2010) The morphology and systematics of Mammalodon colliveri (Cetacea: Mysticeti), a toothed mysticete from the Oligocene of Australia. Zool J Linnean Soc 158:367–476

    Article  Google Scholar 

  • Fitzgerald EMG (2012) Archaeocete-like jaws in a baleen whale. Biol Lett 8:94–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Fordyce RE, Marx FG (2013) The pygmy right whale Caperea marginata: the last of the cetotheres. Proc R Soc B 280:1–6. doi:10.1098/rspb.2012.2645

  • Goloboff P, Farris J, Nixon K (2003) TNT: Tree Analysis Using New Technology. Program and documentation, available from the authors, and from www.zmuc.dk/public/phylogeny. Accessed 8 May 2013

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap press of Harvard University, Cambridge

    Google Scholar 

  • Hall BK (1994) Homology: the hierarchical basis of comparative biology. Academic

  • Longrich NR, Field DJ (2012) Torosaurus is not triceratops: ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7:e32623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marx FG (2011) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mamm Evol 18:77–100

    Article  Google Scholar 

  • Marx FG, Buono MR, Fordyce RE, Boessenecker RW (2013) Juvenile morphology: a clue to the origins of the most mysterious of mysticetes? Naturwissenschaften 100:257–261

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML (1988) Heterochrony in evolution. Springer

  • McNamara K (1995) Evolutionary change and heterochrony. Wiley

  • Mead JG, Fordyce RE (2009) The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contributions to Zoology:1–248

  • Mooers AO, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Q Rev Biol 72:31–54

    Article  Google Scholar 

  • Nee S, May RM (1997) Extinction and the loss of evolutionary history. Science 278:692–694

    Article  CAS  PubMed  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Prieto-Marquez A (2010) Glishades ericksoni, a new hadrosauroid (Dinosauria: Ornithopoda) from the Late Cretaceous of North America. Zootaxa 2452:1–17

    Google Scholar 

  • Scannella JB, Horner JR (2010) Torosaurus Marsh, 1891, is Triceratops Marsh, 1889 (Ceratopsidae: Chasmosaurinae): synonymy through ontogeny. J Vertebr Paleontol 30:1157–1168

    Article  Google Scholar 

  • Stanley SM (1979) Macroevolution, pattern and process. The Johns Hopkins University, San Francisco

    Google Scholar 

  • Steeman ME (2007) Cladistic analysis and a revised classification of fossil and recent mysticetes. Zool J Linnean Soc 150:875–894

    Article  Google Scholar 

  • Tsai CH, Fordyce RE (2014) Disparate heterochronic processes in baleen whale evolution. Evol Biol 41:299–307

    Article  Google Scholar 

  • Wiens J, Bonett R, Chippindale P (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54:91–110

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

For access to collections and allowing photography during Tsai’s and/or Fordyce’s visits, we thank Tadasu Yamada, Naoki Kohno, Yuko Tajima (National Museum of Nature and Science, Tokyo, Japan), Catherine Kemper, David Stemmer, Neville Pledge, Mary-Anne Binnie (South Australian Museum, Adelaide, Australia), James Mead, Charles Potter, John Ososky, Nicholas Pyenson, David Bohaska (National Museum of Natural History, Smithsonian Institution, Washington DC, USA), Jim Dines, David Janiger (Natural History Museum, of Los Angeles County, USA), Anton van Helden (National Museum of New Zealand, Wellington, New Zealand), and Erich Fitzgerald, Karen Roberts (Museum Victoria, Melbourne, Australia). We thank Gabriel Aguirre, Felix Marx, and Erich Fitzgerald for the review and comments; Robert Boessenecker and Yoshihiro Tanaka for the discussion. We thank Olivier Lambert, Erich Fitzgerald, and an anonymous reviewer for their constructive comments. James Mead (Washington DC), Erich Fitzgerald, Karen Roberts (Melbourne), and Felix Marx, Ikerne Aguirre, Aiko Fukumoto (Japan) kindly accommodated Tsai during various visits. This study is part of Tsai’s Ph.D. thesis supported by the University of Otago Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsiu Tsai.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 8657 kb)

ESM 2

(DOC 1058 kb)

ESM 3

(DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CH., Fordyce, R.E. Juvenile morphology in baleen whale phylogeny. Naturwissenschaften 101, 765–769 (2014). https://doi.org/10.1007/s00114-014-1216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1216-9

Keywords

Navigation