Skip to main content

Advertisement

Log in

Status of cold fusion (2010)

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abell GC, Matson LK et al (1990) Helium release from aged palladium tritide. Phys Rev B: Mater Phys 41(2):1220

    CAS  Google Scholar 

  • Adamenko S, Vysotskii V (2005) Observation and modeling of the ordered motion of hypothetical magnetically charged particles on the multilayer surface and the problem of low-energy fusion. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama

    Google Scholar 

  • Åman C, Holmlid L (1992) Hydrocarbon clusters from a foil diffusion source. J Clust Sci 3:247

    Google Scholar 

  • Aoki T, Kurata Y et al (1994) Helium and tritium concentrations in electrolytic cells. Trans Fusion Technol 26(4):214

    CAS  Google Scholar 

  • Apicella M, Castagna E et al (2005) Some recent results at ENEA. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama

    Google Scholar 

  • Arata Y, Zhang Y-C (1995a) Achievement of solid-state plasma fusion (“cold fusion”). Proc Japan Acad 71(Ser B):304

    Article  Google Scholar 

  • Arata Y, Zhang Y-C (1995b) Achievement of solid-state plasma fusion (“cold fusion”). Koon Gakkaishi 21(6):303 (in Japanese)

    CAS  Google Scholar 

  • Arata Y, Zhang Y-C (1996) Achievement of solid-state plasma fusion (“cold fusion”). Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy, Lake Toya, Hokkaido, Japan, New Energy and Industrial Technology Development Organization, Tokyo Institute of Technology, Tokyo, Japan

  • Arata Y, Zhang Y-C (1996b) Deuterium nuclear reaction process within solid. Proc Japan Acad 72(Ser. B):179

    Article  Google Scholar 

  • Arata Y, Zhang Y-C (1997a) Solid-state plasma fusion (‘cold fusion’). J High Temp Soc 23:1–56 (special volume)

    Google Scholar 

  • Arata Y, Zhang Y-C (1997b) Helium (4He, 3He) within deuterated Pd-black. Proc Jpn Acad, Ser B 73:1

    Google Scholar 

  • Arata Y, Zhang Y-C (1999a) Anomalous production of gaseous 4He at the inside of ‘DS cathode’ during D2O-electrolysis. Proc Jpn Acad, Ser B 75(10):281

    Article  Google Scholar 

  • Arata Y, Zhang Y-C (1999b) Critical condition to induce ‘excess energy’ within [DS-H2O] cell. Proc Jpn Acad, Ser B 75(Ser. B):76

    Google Scholar 

  • Arata Y, Zhang Y-C (1999c) Observation of anomalous heat release and helium-4 production from highly deuterated fine particles. Jpn J Appl Phys 2 38(7A):L774

    Article  CAS  Google Scholar 

  • Arata Y, Zhang Y-C (2000) Definite difference amoung [DS-D2O], [DS-H2O] and [Bulk-D2O] cells in the deuterization and deuterium-reaction. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna

    Google Scholar 

  • Arata Y, Zhang Y-C (2002) Formation of condensed metallic deuterium lattice and nuclear fusion. Proc Jpn Acad Ser B 78(Ser B):57–62

    Google Scholar 

  • Badiei S, Andersson PU et al (2009) Fusion reactions in high-density hydrogen: A fast route to small-scale fusion? International J Hydrogen Energy 34:487

    Google Scholar 

  • Bazhutov Y, Khrenov BA et al (1982) About one opportunity of second shower spectrum interpretation observed at small depth underground. Izv AN USSR, ser Phys 46(9):2425

    CAS  Google Scholar 

  • Bendkowsky V, et al (2009) Novel binding mechanism for ultra-long range molecules. arXiv:0809.2961v1

  • Bockris J, Chien C et al (1992) Tritium and helium production in palladium electrodes and the fugacity of deuterium therein. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Nagoya Japan. Universal Academy Press, Tokyo, pp 231–240

    Google Scholar 

  • Botta E, Bracco R et al (1995) Search for 4He production from Pd/D2 systems in gas phase. 5th International Conference on Cold Fusion, Monte-Carlo, Monaco, IMRA Europe, Sophia Antipolis Cedex, France, pp 233–240

  • Botta E, Bressani T et al (1996) Measurement of 4He production from D2 gas-loaded Pd samples. Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy, Lake Toya, Hokkaido, Japan, New Energy and Industrial Technology Development Organization. Tokyo Institute of Technology, Tokyo, 29–35

    Google Scholar 

  • Bush BF, Lagowski JJ (1998) Methods of generating excess heat with the Pons and Fleischmann effect: rigorous and cost effective calorimetry, nuclear products analysis of the cathode and helium analysis. The Seventh International Conference on Cold Fusion, Vancouver, Canada. ENECO, Salt Lake City, 38–42

    Google Scholar 

  • Bush BF, Lagowski JJ et al (1991) Helium production during the electrolysis of D2O in cold fusion experiments. J Electroanal Chem 304:271–278

    Article  CAS  Google Scholar 

  • Camp WJ (1977) Helium detrapping and release from metal tritides. J Vac Sci Technol 14:514–517

    Article  CAS  Google Scholar 

  • Case LC (1998) Catalytic fusion of deuterium into helium-4. The Seventh International Conference on Cold Fusion, Vancouver, Canada. ENECO, Salt Lake City, pp 48–50

    Google Scholar 

  • Cedzynska K, Will FG (1992) Closed-system analysis of tritium in palladium. Fusion Technol 22:156–159

    CAS  Google Scholar 

  • Chien C-C, Huang TC (1992) Tritium production by electrolysis of heavy water. Fusion Technol 22:391–394

    CAS  Google Scholar 

  • Chien C-C, Hodko D et al (1992) On an electrode producing massive quantities of tritium and helium. J Electroanal Chem 338:189–212

    Article  CAS  Google Scholar 

  • Chrzan DC, Wolfer WG (1991) Helium bubble growth by the dislocation pipe diffusion mechanism. Sandia National Laboratory, Livermore, pp 91–8671

    Google Scholar 

  • Chubb SR (2009) Overcoming the coulomb barrier and related effects through resonant electrodynamics and quantum mechanics in the Fleischmann–Pons excess heat effect. In: Marwan J, Krivit S (eds) Low-energy nuclear reactions sourcebook, vol 2. Oxford University Press, Oxford (in press)

    Google Scholar 

  • Chubb TA, Chubb SR (1991) Cold fusion as an interaction between ion band states. Fusion Technol 20:93–99

    CAS  Google Scholar 

  • Clarke BW, Oliver BM et al (2001) Search for 3He and 4He in Arata-style palladium cathodes II: Evidence for tritium production. Fusion Sci Technol 40:152–167

    CAS  Google Scholar 

  • Claytor TN, Tuggle DG et al (1992) Evolution of tritium from deuterided palladium subject to high electrical currents. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Nagoya Japan. Universal Academy Press, Tokyo, pp 217–229

    Google Scholar 

  • Claytor TN, Jackson DD et al (1996) Tritium production from a low voltage deuterium discharge of palladium and other metals. J New Energy 1(1):111–118

    CAS  Google Scholar 

  • Claytor TN, Schwab MJ et al (1998) Tritium production from palladium alloys. The Seventh International Conference on Cold Fusion, Vancouver, Canada. ENECO, Salt Lake City, pp 88–93

    Google Scholar 

  • Czerski K, Huke A et al (2004) The 2H(d,p)3H reaction in metallic media at very low energies. Europhys Lett 68:363

    Article  CAS  Google Scholar 

  • Dash J (2004) Research at Portland State University, 1989–2004 on the interaction of metals with hydrogen isotopes. ASTI-5, Asti, Italy, www.iscmns.org/

  • Dardik I, Zilov T et al (2007) Report on electrolysis experiments at energetics technologies, International Conference on Condensed Matter Nuclear Science , ICCF-13, Sochi, Russia, p. 325

  • De Ninno A, Del Giudice E et al (2008) Excess heat and calorimetric calculation: evidence of coherent nuclear reactions in condensed matter at room temperature. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington, DC, pp 127–158

    Google Scholar 

  • DeNinno A, Frattolillo A et al (2004) 4He detection during H/D loading of Pd cathodes. ASTI-5, Asti, Italy, www.iscmns.org/

  • Dufour J, Murat D et al (2000) Hydrex catallyzed transmutation of uranium and palladium: experimental part. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna, 153–158

    Google Scholar 

  • Fisher JC (2007) Outline of polyneutron theory. 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, Catania, Sicily, Italy, The International Society for Condensed Matter Science, pp 70–91

  • Fleischmann M, Pons S et al (1989) Electrochemically induced nuclear fusion of deuterium. J Electroanal Chem 261:301–308, and errata in Vol 263:187–188

    Google Scholar 

  • Fleischmann M, Pons S et al (1994) Possible theories of cold fusion. Nuovo Cim 107A(1):143–156

    Article  CAS  Google Scholar 

  • Gozzi D, Caputo R et al (1993) Excess heat and nuclear product measurements in cold fusion electrochemical cells. Fourth International Conference on Cold Fusion, Lahaina, Maui, Electric Power Research Institute 3412 Hillview Ave, Palo Alto, CA 94304:2–1 to 2–31

  • Gozzi D, Caputo R et al (1993) Helium-4 quantitative measurements in the gas phase of cold fusion electrochemical cells. Fourth International Conference on Cold Fusion, Lahaina, Maui, Electric Power Research Institute 3412 Hillview Ave, Palo Alto, CA 94304: p. 6–1 to 6–19

  • Gozzi D, Cellucci F et al (1998) Erratum to “X-ray, heat excess and 4He in the D/Pd system”. J Electroanal Chem 452:251–271

    Article  CAS  Google Scholar 

  • Hagelstein PL (1992) Coherent and semicoherent neutron transfer reactions I: The interaction Hamiltonian. Fusion Technol 22:172–180

    CAS  Google Scholar 

  • Hagelstein PI (2010) Constraints on energetic particles in the Fleischmann–Pons experiment. Naturwissenschaften 97(4):345

    Article  CAS  PubMed  Google Scholar 

  • Hagelstein PI, Chaudhary I (2008) Models relevant to excess heat production in Fleischmann–Pons experiments. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington, DC, 1503:249–267

  • Hansen WN (1991) Report to the Utah State Fusion/Energy Council on the analysis of selected Pons Fleischmann calorimetric data. Second Annual Conference on Cold Fusion, “The Science of Cold Fusion”, Como, Italy. Societa Italiana di Fisica, Bologna, pp 491–527

    Google Scholar 

  • Hansen LD, Jones SE et al (1998) A response to hydrogen+oxygen recombination and related heat generation in undivided electrolysis cells. J Electroanal Chem 447:225–226

    Article  CAS  Google Scholar 

  • Holmlid L, Hora H et al (2009) Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part Beams 27(3):529

    Article  CAS  Google Scholar 

  • Holst-Hansen P, Britz D (1995) Can current fluctuations account for the excess heat claims of Fleischmann and Pons? J Electroanal Chem 388:11–16

    Article  Google Scholar 

  • Huke A, Czerski K et al (2008) Enhancement of the deuterium-fusion reactions in metals and its experimental implications. arXiv:o805,4538v1

  • Isobe Y, Uneme S et al (2000) Search for coherent deuteron fusion by beam and electrolysis experiments. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna, pp 17–22

    Google Scholar 

  • Isobe Y, Uneme S et al (2002) Search for multibody nuclear reactions in metal deuteride induced with ion beam and electrolysis methods. Jpn J Appl Phys 41(3):1546–1556

    Article  CAS  Google Scholar 

  • Iwamura Y, Itoh T et al (2002a) Nuclide transmutation device and nuclide transmutation method. Mitsubishi Heavy Industries, Patent No. US2002/0080903 A1 and EP 1 202 290 A2

  • Iwamura Y, Sakano M et al (2002b) Elemental analysis of Pd complexes: effects of D2 gas permeation. Jpn J Appl Phys A 41(7):4642–4650

    Article  CAS  Google Scholar 

  • Iwamura Y, Itoh T et al (2003) Low energy nuclear transmutation in condensed matter induced by D2 gas permeation through Pd complexes: correlation between deuterium flux and nuclear products. Tenth International Conference on Cold Fusion. World Scientific, Cambridge, pp 435–454

    Google Scholar 

  • Iwamura Y, Itoh T et al (2004) Observation of nuclear transmutation reactions induced by D2 gas permeation through Pd complexes. ICCF-11, International Conference on Condensed Matter Nuclear Science, Marseilles, France, World Scientific, pp 339–350

  • Iwamura Y, Itoh T et al (2005) Observation of surface distribution of products by X-ray fluorescence spectrometry during D2 gas permeation through Pd cathodes. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama, pp 178–187

    Google Scholar 

  • Jones JE, Hansen LD et al (1995) Faradaic efficiencies less than 100% during electrolysis of water can account for reports of excess heat in ‘cold fusion’ cells. J Phys Chem 99:6973–6979

    Article  CAS  Google Scholar 

  • Kainthla RC, Szklarczyk M et al (1989) Eight chemical explanations of the Fleischmann–Pons effect. Hydrogen Energy 14(11):771–775

    Article  CAS  Google Scholar 

  • Karabut AB (2004) Excess heat production in Pd/D during periodic pulse discharge current in various conditions. 11th International Conference on Cold Fusion, Marseilles, France, World Scientific Co, pp 178–193

  • Karabut AB (2005) Research into low-energy nuclear reactions in cathode sample solid with production of excess heat, stable and radioactive impurity nuclides. Condensed Matter Nuclear Science, ICCF-12, Yokohama, Japan, World Scientific, pp 214–230

  • Karabut AB (2007) Excess heat power registration in high voltage electrolysis and discharge systems. International Conference on Condensed Matter Nuclear Science, ICCF-13, Sochi, Russia, Tsiolkovsky Moscow Technical University, pp 225–236

  • Karabut AB, Kucherov YR et al (1991) The investigation of deuterium nuclei fusion at glow discharge cathode. Fusion Technol 20:924

    Google Scholar 

  • Karabut AB, Kucherov YR et al (1992) Nuclear product ratio for glow discharge in deuterium. Phys Lett A 170:265–272

    Article  CAS  Google Scholar 

  • Kasagi J (2008) Screening potential for nuclear reactions in condensed matter. ICCF-14, International Conference on Condensed Matter Nuclear Science, Washington, DC, www.LENR.org

  • Kasagi J, Yuki H et al (1998a) Strongly enhanced Li+D reaction in Pd observed in deuteron bombardment on PdLix with energies between 30 and 75 keV. J Phys Soc Japan 73:608–612

    Google Scholar 

  • Kasagi J, Yuki H et al (1998b) Anomalously enhanced D(d, p)T reaction in Pd and PdO observed at very low bombarding energies. The Seventh International Conference on Cold Fusion, Vancouver, Canada. ENECO, Salt Lake City, pp 180–185

    Google Scholar 

  • Kaushik TC, Shyam A et al (1990) Preliminary report on direct measurement of tritium in liquid nitrogen treated TiDx chips. Indian J Technol 28:667–673

    CAS  Google Scholar 

  • Kervran CL (1963) Transmutations biologiques, metabolismes aberrants de l’asote, le potassium et le magnesium. Librairie Maloine S A, Paris

    Google Scholar 

  • Kervran CL (1972) Biological transmutations. Swan House, Brooklyn

    Google Scholar 

  • Kervran CL (1980) Biological transmutation. Beekman, Woodstock

    Google Scholar 

  • Kim YE (2010) Bose–Einstein condensate theory of deuteron fusion in metal. Purdue University, West Lafayette, Report No. PNMBTG-1-10

  • Komaki H (1992) Observations on the biological cold fusion or the biological transformation of elements. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Nagoya Japan. Universal Academy Press, Tokyo, pp 555–558

    Google Scholar 

  • Komaki H (1993) An Approach to the Probable Mechanism of the Non-Radioactive Biological Cold Fusion or So-Called Kervran Effect (Part 2). Fourth International Conference on Cold Fusion, Lahaina, Maui, Electric Power Research Institute 3412 Hillview Ave, Palo Alto, CA 94304: Vol 4, 44–1 to 44–12

  • Kozima H (2000) Neutron drop: condensation of neutrons in metal hydrides and deuterides. Fusion Technol 37:253–258

    CAS  Google Scholar 

  • Lipson AG, Miley G et al (2005) Enhancement of first wall damage in ITER type Tokamak due to LENR effects. Condensed Matter Nuclear Science, ICCF-12, Yokohama, Japan, World Scientific, pp 325–335

  • Lochak G, Urutskoev L (2004) Low-energy nuclear reactions and the leptonic monopole. 11th International Conference on Cold Fusion, Marseilles, France, World Scientific Co, pp 421–437

  • Matsumoto T (1990) Prediction of new particle emission on cold fusion. Fusion Technol 18:647–651

    CAS  Google Scholar 

  • Matsumoto T (1993) Cold fusion experiments with ordinary water and thin nickel foil. Fusion Technol 24:296–306

    CAS  Google Scholar 

  • Matsunaka M, Isobe Y et al (2002) Studies of coherent deuteron fusion and related nuclear reactions in solid. The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science. Tsinghua Univ, Beijing, pp 237–240

    Google Scholar 

  • McKibben JL (1995) Can cold fusion be catalyzed by fractionally-charged ions that have evaded FC particle searches. Infin Energy 1(4):14–23

    Google Scholar 

  • McKibben JL (1996/1997) Strange-particle catalysis in the production of COH2 gas or iron. Infin Energy 2(11):37–37

    Google Scholar 

  • McKibben JL (1997) Catalytic behavior of one (or two) subquarks bound to their nuclear hosts. Infin Energy 3(13/14):103–105

    Google Scholar 

  • McKibben JL (1998) Recent observations that yield information on catalytic particles. Infin Energy 4(20):70–72

    Google Scholar 

  • McKubre MCH (2003) Review of experimental measurements involving dd reactions, PowerPoint slides. Tenth International Conference on Cold Fusion, Cambridge, MA, World Scientific Publishing Co

  • McKubre MCH, Crouch-Baker S et al (1994) Isothermal flow calorimetric investigations of the D/Pd and H/Pd systems. J Electroanal Chem 368:55–66

    Article  CAS  Google Scholar 

  • McKubre MCH, Crouch-Baker S et al (1998) Energy production processes in deuterated metals. EPRI, Palo Alto, Report No. TR-107843-VI

    Google Scholar 

  • McKubre MC, Tanzella F et al (2000a) Evidence of d-d fusion products in experiments conducted with palladium at near ambient temperatures. Trans Am Nucl Soc 83:367

    Google Scholar 

  • McKubre MCH, Tanzella FL et al (2000b) Finite element modeling of the transient colorimetric behavior of the MATRIX experimental apparatus: 4He and excess of power production correlation through numerical results. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna, pp 23–27

    Google Scholar 

  • McKubre MCH, Tanzella FL et al (2000c) The emergence of a coherent explanation for anomalies observed in D/Pd and H/Pd system: evidence for 4He and 3He production. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna, pp 3–10

    Google Scholar 

  • McKubre MC, Tanzella F et al (2008) Replication of condensed matter heat production. ACS Symposium Series 998, Low-Energy Nuclear Reactions Sourcebook (Marwan, J. Krivit, S. B., eds.) American Chemical Society

  • Miles MH (1998) Reply to ‘An assessment of claims of excess heat in cold fusion calorimetry’. J. Phys. Chem. B 102:3648

    Google Scholar 

  • Miles M, Bush BF (1992) Search for anomalous effects involving excess power and helium during D2O electrolysis using palladium cathodes. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Nagoya Japan. Universal Academy Press, Tokyo, pp 189–199

    Google Scholar 

  • Miles M, Jones CP (1992) Cold fusion experimenter Miles responds to critic. 21st Century Sci & Technol. (spring issue) p 75

  • Miles MH, Bush BF (1994) Heat and helium measurements in deuterated palladium. Trans Fusion Technol 26(4):156–159

    CAS  Google Scholar 

  • Miles M, Bush BF et al (1991) Heat and helium production in cold fusion experiments. Second Annual Conference on Cold Fusion, “The Science of Cold Fusion”, Como, Italy, Societa Italiana di Fisica, Bologna, Italy, pp 363–372

  • Miles MH, Hollins RA et al (1993) Correlation of excess power and helium production during D2O and H2O electrolysis using palladium cathodes. J Electroanal Chem 346:99–117

    Article  CAS  Google Scholar 

  • Miles M, Bush BF et al (1994) Anomalous effects involving excess power, radiation, and helium production during D2O electrolysis using palladium cathodes. Fusion Technol 25:478

    CAS  Google Scholar 

  • Miles M, Imam MA et al (2000) Excess heat and helium production in the palladium-boron system. Trans Am Nucl Soc 83:371–372

    Google Scholar 

  • Miley G, Shrestha P (2008) Transmutation reactions and associated low-energy nuclear reactions effects in solids. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington, DC, pp 173–218

    Google Scholar 

  • Miley G, Yang Y et al (2005) Intense non-linear soft X-ray emission from a hydride target during pulsed D bombardment. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama, pp 314–324

    Google Scholar 

  • Miley G, Hora H et al (2007) Cluster reactions in low energy nuclear reactions (LENR). 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, Catania, Sicily, Italy, The International Society for Condensed Matter Science, pp 235–251

  • Mills RL, Good WR et al (1994) Dihydrino molecule identification. Fusion Technol 25:103–119

    CAS  Google Scholar 

  • Miskelly GM, Heben MJ et al (1989) Analysis of the published calorimetric evidence for electrochemical fusion of deuterium in palladium. Science 246:793–796

    Article  CAS  PubMed  Google Scholar 

  • Mizuno T, Ohmori T et al (1996a) Anomalous isotopic distribution in palladium cathode after electrolysis. J New Energy 1(2):37–44

    CAS  Google Scholar 

  • Mizuno T, Ohmori T et al (1996b) Anomalous isotopic distribution of elements deposited on palladium induced by cathodic electrolysis. Denki Kagaku oyobi Kogyo Butsuri Kagaku 64:1160 (in Japanese)

    CAS  Google Scholar 

  • Mizuno T, Akimoto T et al (1998a) Neutron and heat generation induced by electric discharge. J New Energy 3(1):33–45

    CAS  Google Scholar 

  • Mizuno T, Akimoto T et al (1998b) Confirmation of the changes of isotopic distribution for the elements on palladium cathode after strong electrolysis in D2O solutions. Int J Soc Mat Eng Resour 6(1):45

    CAS  Google Scholar 

  • Morrey JR, Caffee MW et al (1990) Measurements of helium in electrolyzed palladium. Fusion Technol 18:659

    CAS  Google Scholar 

  • Mosier-Boss PA, Szpak S et al (2008) Detection of energetic particles and neutrons emitted during Pd/D co-deposition. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington DC, pp 311–334

    Chapter  Google Scholar 

  • Mosier-Boss PA, Dae JY et al (2010) Comparison of Pd/D co-deposition and DT neutron generated triple tracks observed in CR-39 detectors. Eur Phys J Appl Phys 51:20901–20911

    Article  CAS  Google Scholar 

  • Narita S, Yamada H et al (2005) Discharge experiment using Pd/CaO/Pd mulit-layered cathode. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama, pp 188–195

    Google Scholar 

  • Notoya R (1994) Alkali-hydrogen cold fusion accompanied by tritium production on nickel. Trans Fusion Technol 26(4T):205–208

    CAS  Google Scholar 

  • Oriani RA, Fisher JC (2004) Nuclear reactions produced in an operating electrolytic cell. 11th International Conference on Cold Fusion. World Scientific, Marseilles, pp 295–303

    Google Scholar 

  • Preparata G (1991) Some theories of ‘cold’ nuclear fusion: a review. Fusion Technol 20:82–92

    CAS  Google Scholar 

  • Preparata G (1993) Cold fusion ‘93’: Some theoretical ideas. Fourth International Conference on Cold Fusion, Lahaina, Maui, Electric Power Research Institute 3412 Hillview Ave, Palo Alto, CA 94304:12–1 to 12–23

  • Preparata G (1994) Cold fusion ‘93’: Some theoretical ideas. Trans Fusion Technol 26(4T):397–407

    CAS  Google Scholar 

  • Rabinowitz M (1993) Do the laws of nature and physics agree on what is allowed and forbidden? 21st Century Sci and Technol Spring, pp 10–17

  • Rambaut M (2004) Electrons clusters and magnetic monopoles. 11th International Conference on Cold Fusion, Marseilles. France, World Scientific Co, pp 798–805

  • Sankaranarayanan TK, Srinivasan M et al (1996) Investigation of low-level tritium generation in Ni-H2O electrolytic cells. Fusion Technol 30:349

    CAS  Google Scholar 

  • Savvatimova I, Dash J (2002) Emission registration on films during glow discharge experiments. The 9th International Conference on Cold Fusion, Condensed Matter Nuclear Science, Tsinghua Univ, Beijing, China, Tsinghua Univ Press, pp 312–318

  • Savvatimova I, Kucherov Y et al (1994) Cathode material change after deuterium glow discharge experiments. Trans Fusion Technol 26(4T):389–394

    Google Scholar 

  • Savvatimova I, Savvatimov G et al (2007) Decay in tungsten irradiated by low energy deuterium ions. International Conference on Condensed Matter Nuclear Science, ICCF-13. Tsiolkovsky Moscow Technical University, Sochi, pp 295–308

    Google Scholar 

  • Schwarzchild B (2006) Search for magnetic monopoles at Tevatron sets new upper limit on their production. Physics Today 59:16

    Article  Google Scholar 

  • Shanahan K (2005) Comments on thermal behavior of polarized Pd/D electrodes prepared by co-deposition. Thermochim Acta 428:207–212

    Article  CAS  Google Scholar 

  • Shanahan K (2006) Reply to Comment on papers by K Shanahan that propose to explain anomalous heat generated by cold fusion. Thermochim Acta 441:210–214

    Article  CAS  Google Scholar 

  • Shoulders K (2006) Projectiles from the dark side. Infin Energy 12(70):39–40

    Google Scholar 

  • Shoulders K, Shoulders S (1996) Observations on the role of charge clusters in nuclear cluster reactions. J New Energy 1(3):111–121

    CAS  Google Scholar 

  • Storms E (1998) Cold fusion revisited. Infin Energy 4(21):16–29

    Google Scholar 

  • Storms E (2000) Excess power production from platinum cathodes using the Pons-Fleischmann effect. 8th International Conference on Cold Fusion, Lerici (La Spezia), Italy. Italian Physical Society, Bologna, pp 55–61

    Google Scholar 

  • Storms E (2004) Calorimetry 101 for cold fusion, www.LENR-CANR.org

  • Storms E (2006) Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion. Thermochim Acta 441(2):207–209

    Article  CAS  Google Scholar 

  • Storms EK (2007) The science of low energy nuclear reaction. World Scientific, Singapore, 312 pages

    Google Scholar 

  • Storms EK, Scanlan B (2007) Radiation produced by glow discharge in deuterium. 8th International Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals 2007, Catania, Sicily, pp 297–305 see also: http://www.iscmns.org/catania07/index.htm

  • Storms EK, Scanlan B (2010) What is real about cold fusion and what explanations are plausible? AIP Symposium Series J Marwan, Am Inst of Phys, in press

  • Stringham R (2003) Cavitation and fusion. Tenth International Conference on Cold Fusion. World Scientific, Cambridge, pp 233–246

    Google Scholar 

  • Swartz MR, Verner G (2003) Excess heat from low-electrical conducting heavy water spiral-wound Pd/D2O/Pt and Pd/D2O-PdCl2/Pt devices. Tenth International Conference on Cold Fusion. World Scientific, Cambridge, pp 29–44

    Google Scholar 

  • Szpak S, Mosier-Boss PA et al (2009) Further evidence of nuclear reactions in the Pd/D lattice: emission of charged articles. Naturwiss 94:515

    Article  CAS  Google Scholar 

  • Takahashi A (1998) Results of experimental studies of excess heat vs nuclear products correlation and conceivable reaction model. The Seventh International Conference on Cold Fusion, Vancouver, Canada, ENECO, Inc, Salt Lake City, UT, pp 378–382

  • Takahashi A (2005) Progress in condensed matter nuclear science. Condensed Matter Nuclear Science, ICCF-12. World Scientific, Yokohama, pp 1–25

    Google Scholar 

  • Takahashi A, Yabuuchi N (2008) Study on 4D/tetrahedral symmetric condensate condensation motion by non-linear Langevin equation. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington DC, pp 57–83

    Google Scholar 

  • Thompkins P, Byrd C (1993) The secret life of plants. Penguin, New York, 402 pages

    Google Scholar 

  • Toimela T (2004) Effective interaction potential in the deuterium plasma and multiple resonance scattering. 11th International Conference on Cold Fusion, Marseilles, France, World Scientific Co, pp 622–634

  • Toimela T (2007) Multiple resonance scattering. 8th International Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, Catania, Sicily, Italy, The International Society for Condensed Matter Science, pp 328–340

  • Violante V, Sarto F et al. (2008) Material science on Pd-D system to study the occurrence of excess power. 14th International Conference on Condensed Matter Nuclear Science, Washington, DC, see www.LENR.org

  • Vysotskii V, Kornilova AA (2003) Nuclear fusion and transmutation of isotopes in biological systems. Mockba, Ukraine, 302 pages

    Google Scholar 

  • Vysotskii V, Kornilova AA et al (1996a) Experimental discovery and investigation of the phenomenon of nuclear transmutation of isotopes in growing biological cultures. Infin Energy 2(10):63–66

    Google Scholar 

  • Vysotskii VI, Kornilova AA et al (1996b) Experimental discovery of phenomenon of low-energy nuclear transformation of isotopes (Mn55 = Fe57) in growing biological cultures. Sixth International Conference on Cold Fusion, Progress in New Hydrogen Energy, Lake Toya, Hokkaido, Japan, New Energy and Industrial Technology Development Organization. Tokyo Institute of Technology, Tokyo, pp 687–693

  • Vysotskii V, Kornilova AA et al (2001) Observation and mass-spectrometry. Study of controlled transmutation of intermediate mass isotopes in growing biological cultures. Infin Energy 6(36):64–68

    Google Scholar 

  • Vysotskii V, Tashyrev AB et al (2008) Experimental observation and modeling of Cs-137 isotope deactivation and stable isotope transmutation in biological cells. In: Marwan J, Krivit SB (eds) Low-Energy Nuclear Reactions Sourcebook. American Chemical Society, Washington, DC, pp 295–309

    Google Scholar 

  • Wan J, Holmlid L (2002) Rydberg Matter clusters of hydrogen (H2)N with well-defined kinetic energy release observed by neutral time-of-flight. Chem Phys 277:201–210

    Article  Google Scholar 

  • Widom A, Larsen L (2006) Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces. Eur Phys J C46:107 also: arXiv:cond-mat/0505026v1 2 May 2005

    Article  CAS  Google Scholar 

  • Will F (1997) Hydrogen+oxygen recombination and related heat generation in undivided electrolysis cells. J Electroanal Chem 426:177–184

    Article  CAS  Google Scholar 

  • Wilson RH, Bray JW et al (1992) Analysis of experiments on the calorimetry of LiOD-D2O electrochemical cells. J Electroanal Chem 332:1

    Article  CAS  Google Scholar 

  • Wolf KL, Packham NJC et al (1990) Neutron emission and the tritium content associated with deuterium-loaded palladium and titanium metals. J Fusion Energy 9(2):105–113

    Article  CAS  Google Scholar 

  • Yuki H, Satoh T et al (1997) D+D reaction in metal at bombarding energies below 5 keV. J Phys G: Nucl Part Phys 23:1459–1464

    Article  CAS  Google Scholar 

  • Zhang QF, Gou QQ et al (1992) The detection of 4-He in Ti-cathode on cold fusion. Third International Conference on Cold Fusion, “Frontiers of Cold Fusion”, Nagoya Japan. Universal Academy Press, Tokyo, pp 531–534

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank Jed Rothwell, and Abd ul-Rahman Lomax for their suggestions and corrections. Discussions with Brian Scanlan have been especially helpful in arriving at an understanding of this complex subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund Storms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storms, E. Status of cold fusion (2010). Naturwissenschaften 97, 861–881 (2010). https://doi.org/10.1007/s00114-010-0711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-010-0711-x

Keywords

Navigation