Skip to main content

Advertisement

Log in

A Statistical Model for Intervertebral Disc Degeneration: Determination of the Optimal T2 Cut-Off Values

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Summary

Purpose

The aim of this study was to investigate the possibility of quantitative classification in intervertebral disc degeneration using spin–spin relaxation time (T2) cut-off values with regard to morphological classifications.

Methods

Lumbar magnetic resonance (MR) imaging was performed on 21 subjects (a total of 104 lumbar disks). The T2 relaxation time was measured in the nucleus pulposus using a sagittal multi-echo spin-echo sequence. The morphological classification of disc degeneration was assessed independently by three experienced neuroradiologists according to the Pfirrmann and Schneiderman classifications. Receiver operating characteristic analysis was performed among grades to determine T2 cut-off values in each classification. Intra- and interobserver differences were calculated using kappa statistics.

Results

Moderate overall interobserver agreement was found between observers in both the Pfirrmann and Schneiderman classification schemes (kappa 0.46 and 0.51), while intraobserver reliability was substantial to almost perfect. The interobserver reliability was only fair in Pfirrmann grades III and IV (kappa 0.33 and 0.36), but the T2 cut-off values still indicated a significant difference between grades (p < 0.05).

Conclusions

Interobserver agreement of MR evaluation in patients with intervertebral disc degeneration was only fair to moderate on the classification of more severe disc degeneration in the Pfirrmann and Schneiderman schemes. Based on our results, quantitative T2 cut-off values seem to be a more reliable method to define the degree of disc degeneration, which may help staging intervertebral disc degeneration (IVDD) even if the interobserver reliability is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin WH, Watkins RG. Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine. 1987;12(3):276–81.

    Article  CAS  PubMed  Google Scholar 

  2. Tertti M, Paajanen H, Laato M, Aho H, Komu M, Kormano M. Disc degeneration in magnetic resonance imaging. A comparative biochemical, histologic, and radiologic study in cadaver spines. Spine. 1991;16(6):629–34.

    Article  CAS  PubMed  Google Scholar 

  3. Gunzburg R, Parkinson R, Moore R, Cantraine F, Hutton W, Vernon-Roberts B, et al. A cadaveric study comparing discography, magnetic resonance imaging, histology, and mechanical behavior of the human lumbar disc. Spine. 1992;17(4):417–26.

    Article  CAS  PubMed  Google Scholar 

  4. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kanayama M, Togawa D, Takahashi C, Terai T, Hashimoto T. Cross-sectional magnetic resonance imaging study of lumbar disc degeneration in 200 healthy individuals. J Neurosurg Spine. 2009;11(4):501–7. doi:10.3171/2009.5.SPINE08675.

    Article  PubMed  Google Scholar 

  6. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine. 2007;32(24):E708–12. doi:10.1097/BRS.0b013e31815a59a000007632-200711150-00028[pii].

    Article  PubMed  Google Scholar 

  7. Haneder S, Apprich SR, Schmitt B, Michaely HJ, Schoenberg SO, Friedrich KM, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol. 2013;23(3):861–8. doi:10.1007/s00330-012-2660-6.

    Article  PubMed  Google Scholar 

  8. Wang C, Witschey W, Goldberg A, Elliott M, Borthakur A, Reddy R. Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Reson Med. 2010;64(5):1520–8. doi:10.1002/mrm.22533.

    Article  CAS  PubMed  Google Scholar 

  9. Paajanen H, Komu M, Lehto I, Laato M, Haapasalo H. Magnetization transfer imaging of 2 disc degeneration. Correlation of relaxation parameters with biochemistry. Spine. 1994;19(24):2833–7.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen AM, Johannessen W, Yoder JH, Wheaton AJ, Vresilovic EJ, Borthakur A, et al. Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J Bone Joint Surg Am. 2008;90(4):796–802. doi:10.2106/JBJS.G.0066790/4/796[pii].

    Article  PubMed Central  PubMed  Google Scholar 

  11. Zobel BB, Vadala G, Del Vescovo R, Battisti S, Martina FM, Stellato L, et al. T1rho magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine. 2012;37(14):1224–30. doi:10.1097/BRS.0b013e31824b2450.

    Article  PubMed  Google Scholar 

  12. Jenkins JP, Hickey DS, Zhu XP, Machin M, Isherwood I. MR imaging of the intervertebral disc: a quantitative study. Br J Radiol. 1985;58(692):705–9.

    Google Scholar 

  13. Zuo J, Saadat E, Romero A, Loo K, Li X, Link TM, et al. Assessment of intervertebral disc degeneration with magnetic resonance single-voxel spectroscopy. Magn Reson Med. 2009;62(5):1140–6. doi:10.1002/mrm.22093.

    Article  CAS  PubMed  Google Scholar 

  14. Beattie PF, Morgan PS, Peters D. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: a new method to potentially quantify the physiologic effect of physical therapy intervention. J Orthop Sports Phys Ther. 2008;38(2):42–9. doi:10.2519/jospt.2008.26311344[pii].

    Article  PubMed  Google Scholar 

  15. Niinimaki J, Korkiakoski A, Ojala O, Karppinen J, Ruohonen J, Haapea M, et al. Association between visual degeneration of intervertebral discs and the apparent diffusion coefficient. Magn Reson Imaging. 2009;27(5):641–7. doi:10.1016/j.mri.2008.10.005S0730-725X(08)00340-8[pii].

    Article  PubMed  Google Scholar 

  16. Perry J, Haughton V, Anderson PA, Wu Y, Fine J, Mistretta C. The value of T2 relaxation times to characterize lumbar intervertebral disks: preliminary results. AJNR Am J Neuroradiol. 2006;27(2):337–42. doi:27/2/337[pii].

    CAS  PubMed  Google Scholar 

  17. Marinelli NL, Haughton VM, Anderson PA. T2 relaxation times correlated with stage of lumbar intervertebral disk degeneration and patient age. AJNR Am J Neuroradiol. 2010;31(7):1278–82. doi:10.3174/ajnr.A2080ajnr.A2080[pii].

    Article  CAS  PubMed  Google Scholar 

  18. Trattnig S, Stelzeneder D, Goed S, Reissegger M, Mamisch TC, Paternostro-Sluga T, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol. 2010;20(11):2715–22. doi:10.1007/s00330-010-1843-2.

    Article  PubMed  Google Scholar 

  19. Kettler A, Wilke HJ. Review of existing grading systems for cervical or lumbar disc and facet joint degeneration. Eur Spine J. 2006;15(6):705–18. doi:10.1007/s00586-005-0954-y.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Niu G, Yang J, Wang R, Dang S, Wu EX, Guo Y. MR imaging assessment of lumbar intervertebral disk degeneration and age-related changes: apparent diffusion coefficient versus T2 quantitation. AJNR Am J Neuroradiol. 2011;32(9):1617–23. doi:10.3174/ajnr.A2556ajnr.A2556[pii].

    Article  Google Scholar 

  21. Stelzeneder D, Welsch GH, Kovacs BK, Goed S, Paternostro-Sluga T, Vlychou M, et al. Quantitative T2 evaluation at 3.0 T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol. 2012;81(2):324–30. doi:10.1016/j.ejrad.2010.12.093S0720-048X(11)00099-4[pii].

    Article  PubMed  Google Scholar 

  22. Welsch GH, Trattnig S, Paternostro-Sluga T, Bohndorf K, Goed S, Stelzeneder D, et al. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skeletal Radiol. 2011;40(5):543–51. doi:10.1007/s00256-010-1036-8.

    Article  PubMed  Google Scholar 

  23. Takashima H, Takebayashi T, Yoshimoto M, Terashima Y, Tsuda H, Ida K, et al. Correlation between T2 relaxation time and intervertebral disk degeneration. Skeletal Radiol. 2012;41(2):163–7. doi:10.1007/s00256-011-1144-0.

    Article  PubMed  Google Scholar 

  24. Millecamps M, Tajerian M, Naso L, Sage EH, Stone LS. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain. 2012;153(6):1167–79. doi:10.1016/j.pain.2012.01.027S0304-3959(12)00054-1[pii].

    Article  PubMed  Google Scholar 

  25. Hughes SP, Freemont AJ, Hukins DW, McGregor AH, Roberts S. The pathogenesis of degeneration of the intervertebral disc and emerging therapies in the management of back pain. J Bone Joint Surg Br. 2012;94(10):1298–304. doi:94-B/10/1298[pii]10.1302/0301-620X.94B10.28986.

    Article  CAS  PubMed  Google Scholar 

  26. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64. doi:10.1002/jmri.10263.

    Article  PubMed  Google Scholar 

  27. Chan YH. Biostatistics 201: linear regression analysis. Singapore Med J. 2004;45(2):55–61.

    CAS  PubMed  Google Scholar 

  28. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  29. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360–3.

    PubMed  Google Scholar 

  30. Pye SR, Reid DM, Smith R, Adams JE, Nelson K, Silman AJ, et al. Radiographic features of lumbar disc degeneration and self-reported back pain. J Rheumatol. 2004;31(4):753–8. doi:0315162X-31-753[pii].

    PubMed  Google Scholar 

  31. de Schepper EI, Damen J, van Meurs JB, Ginai AZ, Popham M, Hofman A, et al. The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features. Spine. 2010;35(5):531–6. doi:10.1097/BRS.0b013e3181aa5b33.

    Article  PubMed  Google Scholar 

  32. Pye SR, Reid DM, Lunt M, Adams JE, Silman AJ, O’Neill TW. Lumbar disc degeneration: association between osteophytes, end-plate sclerosis and disc space narrowing. Ann Rheum Dis. 2007;66(3):330–3. doi:ard.2006.052522[pii]10.1136/ard.2006.052522.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine. 1990;15(5):411–5.

    Article  CAS  PubMed  Google Scholar 

  34. Battie MC, Videman T, Parent E. Lumbar disc degeneration: epidemiology and genetic influences. Spine. 2004;29(23):2679–90. doi:00007632-200412010-00012[pii].

    Article  PubMed  Google Scholar 

  35. Takatalo J, Karppinen J, Niinimaki J, Taimela S, Nayha S, Mutanen P, et al. Does lumbar disc degeneration on magnetic resonance imaging associate with low back symptom severity in young Finnish adults? Spine. 2011;36(25):2180–9. doi:10.1097/BRS.0b013e3182077122.

    Article  PubMed  Google Scholar 

  36. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology. 1988;166(1 Pt 1):193–9.

    Article  CAS  PubMed  Google Scholar 

  37. Fardon DF, Milette PC. Nomenclature and classification of lumbar disc pathology. Recommendations of the combined task forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine. 2001;26(5):E93–113.

    Article  CAS  PubMed  Google Scholar 

  38. Yu SW, Sether LA, Ho PS, Wagner M, Haughton VM. Tears of the anulus fibrosus: correlation between MR and pathologic findings in cadavers. AJNR Am J Neuroradiol. 1988;9(2):367–70.

    CAS  PubMed  Google Scholar 

  39. Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol. 1992;65(773):361–9.

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe A, Benneker LM, Boesch C, Watanabe T, Obata T, Anderson SE. Classification of intervertebral disk degeneration with axial T2 mapping. AJR Am J Roentgenol. 2007;189(4):936–42. doi:189/4/936[pii]10.2214/AJR.07.2142.

    Article  Google Scholar 

  41. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther. 2005;85(3):257–68.

    PubMed  Google Scholar 

  42. Lurie JD, Tosteson AN, Tosteson TD, Carragee E, Carrino JA, Kaiser J, et al. Reliability of magnetic resonance imaging readings for lumbar disc herniation in the Spine Patient Outcomes Research Trial (SPORT). Spine. 2008;33(9):991–8. doi:10.1097/BRS.0b013e31816c837900007632-200804200-00011[pii].

    Article  PubMed Central  PubMed  Google Scholar 

  43. Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine. 2009;34(9):934–40. doi:10.1097/BRS.0b013e3181a01b3f00007632-200904200-00012[pii].

    Article  PubMed  Google Scholar 

  44. Jensen TS, Sorensen JS, Kjaer P. Intra- and inter-observer reproducibility of vertebral endplate signal (modic) changes in the lumbar spine: the Nordic Modic Consensus Group classification. Acta Radiol. 2007;48(7):748–54. doi:781629176 [pii]10.1080/02841850701422112.

    Article  CAS  PubMed  Google Scholar 

  45. Manchikanti L, Glaser SE, Wolfer L, Derby R, Cohen SP. Systematic review of lumbar discography as a diagnostic test for chronic low back pain. Pain Physician. 2009;12(3):541–59.

    PubMed  Google Scholar 

  46. Wilkens P, Storheim K, Scheel I, Berg L, Espeland A. No effect of 6-month intake of glucosamine sulfate on Modic changes or high intensity zones in the lumbar spine: sub-group analysis of a randomized controlled trial. J Negat Results Biomed. 2012;11:13. doi:10.1186/1477-5751-11-131477-5751-11-13[pii].

  47. Carrino JA, Lurie JD, Tosteson AN, Tosteson TD, Carragee EJ, Kaiser J, et al. Lumbar spine: reliability of MR imaging findings. Radiology. 2009;250(1):161–70. doi:10.1148/radiol.24930719992493071999[pii].

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yu LP, Qian WW, Yin GY, Ren YX, Hu ZY. MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the pfirrmann grading systems. PLoS One. 2012;7(12):e48074. doi:10.1371/journal.pone.0048074PONE-D-12-13150[pii].

  49. Arana E, Royuela A, Kovacs FM, Estremera A, Sarasibar H, Amengual G, et al. Lumbar spine: agreement in the interpretation of 1.5-T MR images by using the Nordic Modic Consensus Group classification form. Radiology. 2010;254(3):809–17. doi:10.1148/radiol.09090706radiol.09090706[pii].

    Article  PubMed  Google Scholar 

  50. Hangai M, Kaneoka K, Hinotsu S, Shimizu K, Okubo Y, Miyakawa S, et al. Lumbar intervertebral disk degeneration in athletes. Am J Sports Med. 2009;37(1):149–55. doi:10.1177/03635465083232520363546508323252[pii].

    Article  PubMed  Google Scholar 

  51. Urban JP, McMullin JF. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine. 1988;13(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  52. Zou J, Yang H, Miyazaki M, Morishita Y, Wei F, McGovern S, et al. Dynamic bulging of intervertebral discs in the degenerative lumbar spine. Spine. 2009;34(23):2545–50. doi:10.1097/BRS.0b013e3181b32998.

    Article  PubMed  Google Scholar 

  53. Claudia C, Farida C, Guy G, Marie-Claude M, Carl-Eric A. Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images. BMC Med Imaging. 2012;12:26. doi:10.1186/1471-2342-12-261471-2342-12-26[pii].

  54. Mulkern RV, Wong ST, Jakab P, Bleier AR, Sandor T, Jolesz FA. CPMG imaging sequences for high field in vivo transverse relaxation studies. Magn Reson Med. 1990;16(1):67–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The project was supported by research grants SROP-4.2.1.B-10/2/KONV-2010–0002, (Developing the South-Transdanubian Regional University Competitiveness), SROP-4.2.2/A- 11/1/KONV-2012–0017 and Hungarian Scientific Research Found OTKA-K109132. AS was supported by the Bolyai Scholarship of Hungarian Academy of Science. The local Diagnostic Center, Mihály Aradi M.D., Prof. József Janszky M.D., Ph.D., D.Sc. and Szilvia Erdélyi-Bótor M.D. are gratefully acknowledged for the MR imaging and technical advices.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bogner MD, PhD.

Additional information

The first two authors have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, S., Juhasz, I., Komaromy, H. et al. A Statistical Model for Intervertebral Disc Degeneration: Determination of the Optimal T2 Cut-Off Values. Clin Neuroradiol 24, 355–363 (2014). https://doi.org/10.1007/s00062-013-0266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-013-0266-2

Keywords

Navigation