Skip to main content
Log in

Trimetazidine improves exercise tolerance in patients with ischemic heart disease

A meta-analysis

Verbesserung der Belastungstoleranz durch Trimetazidin bei Patienten mit ischämischer Herzerkrankung

Eine Metaanalyse

  • Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Aim

This study aimed to evaluate the effect of trimetazidine (TMZ) in addition to standard treatment on exercise tolerance in patients with ischemic heart disease (IHD).

Methods

Studies were identified via a systematic search of PubMed, Embase, Cochrane Library, and the Chinese CNKI databases from January 1978 to January 2015. Data extraction, synthesis, and statistical analysis were performed by standard meta-analysis methods. Random or fixed effects models were used to estimate pooled mean differences in total exercise duration (TED), peak oxygen uptake (pVO2), metabolic equivalent system (METS), and 6-minute walking test (6-MWT).

Results

In all, 16 randomized controlled trials (RCTs) consisting of 2,004 participants were included. Pooled results showed that TMZ treatment significantly improved TED (WMD: 37.35, 95 % CI: 25.58–49.13, p < 0.00001), pVO2 (WMD: 2.41, 95 % CI: 1.76–3.06, p < 0.00001), METS (WMD: 1.33, 95 % CI: 0.38–2.28, p = 0.006), and 6-WMT (WMD: 62.46, 95 % CI: 35.86–89.05, p < 0.001) in all patients with IHD. Subgroup analysis showed that TMZ significantly increased TED in nondiabetic participants (WMD 34.77, 95 % CI: 22.28–47.25, p < 0.001), but not in diabetic participants (WMD: 40.36, 95 % CI: − 18.76–99.48, p = 0.18). And, subgroup analysis of TED by intervention duration suggested that there is no statistically difference between the 3-month and 6-month periods (WMD: 35.47, 95 %CI: 18.35–52.60, p < 0.0001 and WMD: 49.94, 95 %CI: 44.69–55.19, p < 0.00001). In addition, TMZ improved TED (WMD: 50.01, 95 % CI: 44.77–55.25 and WMD: 24.20, 95 % CI: 12.72–35.68) in IHD patients with or without heart failure (HF), respectively.

Conclusion

Addition of TMZ to standard treatment significantly improved exercise tolerance in patients with IHD, and IHD patients with HF may experience even more benefits. However, there is insufficient evidence to show that TMZ has beneficial effects in participants with diabetes.

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war es, die Wirkung von Trimetazidin (TMZ) zusätzlich zu der Standardtherapie auf die Belastungstoleranz bei Patienten mit ischämischer Herzerkrankung („ischemic heart disease“, IHD) zu untersuchen.

Methoden

Studien wurden über eine systematische Suche in den Datenbanken PubMed, Embase, Cochrane Library und in der chinesischen CNKI (China National Knowledge Infrastructure) von Januar 1978 bis Januar 2015 gesucht. Die Datenerfassung, -synthese und statistische Analyse erfolgten mit Standardmethoden der Metaanalyse. Random- oder Fixed-Effects-Modelle wurden eingesetzt, um die gepoolten mittleren Differenzen bei der Gesamtbelastungsdauer („total exercise duration“, TED), der Spitzensauerstoffaufnahme („peak oxygen uptake“, pVO2), dem metabolischen Äquivalentsystem („metabolic equivalent system“, METS) und dem 6-min-Gehtest („6-minute walking test“, 6-MWT) abzuschätzen.

Ergebnisse

Es wurden 16 randomisierte kontrollierte Studien (RCT) mit 2004 Teilnehmern in die Auswertung eingeschlossen. Die gepoolten Ergebnisse zeigten, dass die TMU-Behandlung zu einer signifikanten Verbesserung der TED (gewichtete mittlere Differenz, WMD: 37,35; 95 %-Konfidenzintervall, 95%-KI: 25,58–49,13; p < 0,00001), der pVO2 (WMD: 2,41; 95 %-KI: 1,76–3,06; p < 0,00001), des METS (WMD: 1,33; 95 %-KI: 0,38–2,28; p = 0,006) und des 6-WMT (WMD: 62,46; 95 %-KI: 35,86–89,05; p < 0,001) bei allen Patienten mit IHD führte.

Die Subgruppenanalyse ergab, dass TMZ die TED bei Teilnehmern ohne Diabetes mellitus signifikant erhöhte (WMD 34,77; 95 %-KI: 22,28–47,25; p < 0,001), nicht aber bei Teilnehmern mit Diabetes (WMD: 40,36; 95 %-KI: − 18,76–99,48; p = 0,18). Und aus der Subgruppenanalyse der TED nach Interventionsdauer ergaben sich Hinweise darauf, dass statistisch kein Unterschied zwischen der 3-monatigen und der 6-monatigen Dauer bestehe (WMD: 35,47; 95 %-KI: 18,35–52,60; p < 0,0001 bzw. WMD: 49,94; 95 %-KI: 44,69–55,19; p < 0,00001). Außerdem zeigte sich eine Verbesserung der TED unter TMZ (WMD: 50,01; 95 %-KI: 44,77–55,25 bzw. WMD: 24,20; 95 %-KI: 12,72–35,68) bei IHD-Patienten mit bzw. ohne Herzinsuffizienz.

Schlussfolgerung

Die zusätzliche Gabe von TMZ zur Standardbehandlung verbesserte die Belastungstoleranz signifikant bei Patienten mit ischämischer Herzerkrankung. IHD-Patienten mit Herzinsuffizienz haben möglicherweise noch einen größeren Nutzen. Es gibt jedoch keine ausreichende Evidenz dafür, dass TMZ einen Nutzeffekt bei Teilnehmern mit Diabetes mellitus habe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86(5):580–588

    Article  CAS  PubMed  Google Scholar 

  2. Ruixing Y, Wenwu L, Al-Ghazali R (2007) Trimetazidine inhibits cardiomyocyte apoptosis in a rabbit model of ischemia-reperfusion. Transl Res 149(3):152–160

    Article  PubMed  Google Scholar 

  3. Williams FM, Tanda K, Kus M, Williams TJ (1993) Trimetazidine inhibits neutrophil accumulation after myocardial ischaemia and reperfusion in rabbits. J Cardiovasc Pharmacol 22(6):828–833

    Article  CAS  PubMed  Google Scholar 

  4. Di Napoli P, Chierchia S, Taccardi AA et al (2007) Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. Nitric Oxide 16(2):228–236

    Article  PubMed  Google Scholar 

  5. Rodrigues B, Cam MC, McNeill JH (1995) Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J Mol Cell Cardiol 27(1):169–179

    Article  CAS  PubMed  Google Scholar 

  6. Brottier L, Barat JL, Combe C et al (1990) Therapeutic value of a cardioprotective agent in patients with severe ischaemic cardiomyopathy. Eur Heart J 11(3):207–212

    CAS  PubMed  Google Scholar 

  7. Lu C, Dabrowski P, Fragasso G, Chierchia SL (1998) Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol 82(7):898–901

    Article  CAS  PubMed  Google Scholar 

  8. Chang JA, Froelicher VF (1994) Clinical and exercise test markers of prognosis in patients with stable coronary artery disease. Curr Probl Cardiol 19(9):533–587

    Article  CAS  PubMed  Google Scholar 

  9. Pate RR, Pratt M, Blair SN et al (1995) Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273(5):402–407

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Lu Y, Jiang H et al (2012) Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 59(10):913–922

    Article  CAS  PubMed  Google Scholar 

  11. Zhou X, Chen J (2014) Is treatment with trimetazidine beneficial in patients with chronic heart failure? PLoS One 9(5):e94660

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gao D, Ning N, Niu X, Hao G, Meng Z (2011) Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97(4):278–286

    Article  CAS  PubMed  Google Scholar 

  13. Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    Article  CAS  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535

    Article  PubMed  PubMed Central  Google Scholar 

  15. El-Kady T, El-Sabban K, Gabaly M, Sabry A, Abdel-Hady S (2005) Effects of trimetazidine on myocardial perfusion and the contractile response of chronically dysfunctional myocardium in ischemic cardiomyopathy: a 24-month study. Am J Cardiovasc Drugs 5(4):271–278

    Article  CAS  PubMed  Google Scholar 

  16. Sisakian AS, Torgomian AL, Barkhudarian AL (2006) The effects of trimetazidine on left ventricular function and physical exercise tolerance in patients with ischemic cardiomyopathy. Klin Med (Mosk) 84(10):55–58

    CAS  Google Scholar 

  17. Belardinelli R, Purcaro A (2001) Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy. Eur Heart J 22(23):2164–2170

    Article  CAS  PubMed  Google Scholar 

  18. Fragasso G, Piatti Md PM, Monti L et al (2003) Short- and long-term beneficial effects of trimetazidine in patients with diabetes and ischemic cardiomyopathy. Am Heart J 146(5):E18

    Article  CAS  PubMed  Google Scholar 

  19. Vitale C, Spoletini I, Malorni W et al (2013) Efficacy of trimetazidine on functional capacity in symptomatic patients with stable exertional angina—the VASCO-angina study. Int J Cardiol 168(2):1078–1081

    Article  PubMed  Google Scholar 

  20. Szwed H, Sadowski Z, Elikowski W et al (2001) Combination treatment in stable effort angina using trimetazidine and metoprolol: results of a randomized, double-blind, multicentre study (TRIMPOL II). TRIMetazidine in POLand. Eur Heart J 22(24):2267–2274

    Article  CAS  PubMed  Google Scholar 

  21. Ribeiro LW, Ribeiro JP, Stein R, Leitao C, Polanczyk CA (2007) Trimetazidine added to combined hemodynamic antianginal therapy in patients with type 2 diabetes: a randomized crossover trial. Am Heart J 154(1):78.e71–e77

    Article  Google Scholar 

  22. Di Napoli P, Di Giovanni P, Gaeta MA, D’Apolito G, Barsotti A (2007) Beneficial effects of trimetazidine treatment on exercise tolerance and B-type natriuretic peptide and troponin T plasma levels in patients with stable ischemic cardiomyopathy. Am Heart J 154(3):602. e601–e605

    Article  Google Scholar 

  23. Belardinelli R, Lacalaprice F, Faccenda E, Volpe L (2008) Trimetazidine potentiates the effects of exercise training in patients with ischemic cardiomyopathy referred for cardiac rehabilitation. Eur J Cardiovasc Prev Rehabil 15(5):533–540

    Article  PubMed  Google Scholar 

  24. Belardinelli R, Solenghi M, Volpe L, Purcaro A (2007) Trimetazidine improves endothelial dysfunction in chronic heart failure: an antioxidant effect. Eur Heart J 28(9):1102–1108

    Article  CAS  PubMed  Google Scholar 

  25. Belardinelli R, Cianci G, Gigli M, Mazzanti M, Lacalaprice F (2008) Effects of trimetazidine on myocardial perfusion and left ventricular systolic function in type 2 diabetic patients with ischemic cardiomyopathy. J Cardiovasc Pharmacol 51(6):611–615

    Article  CAS  PubMed  Google Scholar 

  26. Chazov EI Lepakchin VK, Zharova EA et al (2005) Trimetazidine in Angina Combination Therapy–the TACT study: trimetazidine versus conventional treatment in patients with stable angina pectoris in a randomized, placebo-controlled, multicenter study. Am J Ther 12(1):35–42

    Article  PubMed  Google Scholar 

  27. Manchanda SC, Krishnaswami S (1997) Combination treatment with trimetazidine and diltiazem in stable angina pectoris. Heart 78(4):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hui D (2006) Trimetazidine treatment of unstable angina pectoris clinical observation of 50 cases. Chin J Cardiovasc Rehabil Med 15(6):581–583. doi:10.3969/j.issn.1008-0074.2006.06.023

  29. Teng Y (2011) Effect of trimetazidine in the treatment of stable angina pectoris. Chin J Mod Drug Appl 11,187–188

  30. Zhang Z, Jun-ai MA (2006) Effect of trimetazidine in the treatment of chronic heart failure of left ventricle in Patients with coronary heart disease. Chin J Cardiovasc Med 04:301–303

    Google Scholar 

  31. Ferraro E, Giammarioli AM, Caldarola S et al (2013) The metabolic modulator trimetazidine triggers autophagy and counteracts stress-induced atrophy in skeletal muscle myotubes. Febs J 280(20):5094–5108

    Article  CAS  PubMed  Google Scholar 

  32. Monti LD, Setola E, Fragasso G et al (2006) Metabolic and endothelial effects of trimetazidine on forearm skeletal muscle in patients with type 2 diabetes and ischemic cardiomyopathy. Am J Physiol Endocrinol Metab 290(1):E54–E59

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Ethics declarations

Conflict of interest

Y. Zhao, L. Peng, Y. Luo, S. Li, Z. Zheng, R. Dong, J. Zhu, and J. Liu state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Peng, L., Luo, Y. et al. Trimetazidine improves exercise tolerance in patients with ischemic heart disease. Herz 41, 514–522 (2016). https://doi.org/10.1007/s00059-015-4392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4392-2

Keywords

Schlüsselwörter

Navigation