Skip to main content
Log in

Physiologic and pathophysiologic changes in the right heart in highly trained athletes

Physiologische und pathophysiologische Auswirkungen auf das rechte Herz bei Leistungssportlern

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Exercise causes changes in the heart in response to the hemodynamic demands of increased systemic and pulmonary requirements during exercise. Understanding these adaptations is of great importance, since they may overlap with those caused by pathological conditions. Initial descriptions of athlete’s heart focused mainly on chronic adaptation of the left heart to training. In recent years, the substantial structural and functional adaptations of the right heart have been documented, highlighting the complex interplay with left heart. Moreover, there is evolving evidence of acute and chronic cardiac damage, mainly involving the right heart, which may predispose subjects to atrial and ventricular arrhythmias, configuring an exercise-induced cardiomyopathy. The aim of this article is to review the current knowledge on the physiologic and pathophysiologic changes in the right heart in highly trained athletes.

Zusammenfassung

Unter sportlicher Hochleistung werden Kreislauf und Lunge besonders beansprucht. Die damit einhergehenden physiologischen Vorgänge können Überschneidungen zu pathologischen Veränderungen unter Krankheitsbedingungen aufweisen. Beim Sportherz wurde das Augenmerk bislang auf akute und chronische Veränderungen des systemischen Kreislaufs und des linken Herzens gerichtet. Erst in den letzten Jahren wurden Veränderungen des rechten Herzens und die Interaktion mit dem linken Herzen näher untersucht. So kommt es unter pathophysiologischen Bedingungen zu rechtskardialen Veränderungen, die zu atrialen und ventrikulären Arrhythmien prädisponieren, welche das Bild einer durch Leistungssport hervorgerufenen Kardiomyopathie prägen können. Dieser Beitrag fasst die bisher bekannten physiologischen und pathophysiologischen Vorgänge am rechten Herzen und im kleinen Kreislauf bei Leistungssportlern zusammen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Morganroth J, Maron BJ, Henry WL, Epstein SE (1975) Comparative left ventricular dimensions in trained athletes. Ann Intern Med 82:521–524

    Article  CAS  PubMed  Google Scholar 

  2. D’Andrea A, Galderisi M, Sciomer S et al (2009) Echocardiographic evaluation of the athlete’s heart: from morphological adaptations to myocardial function. G Ital Cardiol (Rome) 10(8):533–544

    Google Scholar 

  3. Luijkx T, Cramer MJ, Prakken NH et al (2012) Sport category is an important determinant of cardiac adaptation: an MRI study. Br J Sports Med 46(16):1119–1124

    Article  PubMed  Google Scholar 

  4. Wernstedt P, Sjöstedt C, Ekman I et al (2002) Adaptation of cardiac morphology and function to endurance and strength training. A comparative study using MR imaging and echocardiography in males and females. Scand J Med Sci Sports 2:17–25

    Article  Google Scholar 

  5. La Gerche A, Burns AT, Mooney DJ et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006

    Article  Google Scholar 

  6. La Gerche A, Claessen G, Van de Bruaene A et al (2013) Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging 6:329–338

    Article  Google Scholar 

  7. Levine BD (2008) VO2max: what do we know, and what do we still need to know? J Physiol 586:25–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Argiento P, Chesler N, Mule M et al (2010). Exercise stress echocardiography for the study of the pulmonary circulation. Eur Respir J 35:1273–1278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dawson CA (1984) Role of pulmonary vasomotion in physiology of the lung. Physiol Rev 64(2):544–616

    CAS  PubMed  Google Scholar 

  10. West JB (1998) Left ventricular filling pressures during exercise: a cardiological blind spot? Chest 113(6):1695–1697

    Article  CAS  PubMed  Google Scholar 

  11. La Gerche A, Roberts T, Claessen G (2014). The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series). Pulm Circ 4(3):407–416

    Article  Google Scholar 

  12. D’Andrea A, Caso P, Sarubbi B et al (2003) Right ventricular myocardial adaptation to different training protocols in top-level athletes. Echocardiography 20(4):329–336

    Article  Google Scholar 

  13. Oxborough D, Sharma S, Shave R et al (2012) The right ventricle of the endurance atlete: the relationship between morphology and deformation. J Am Soc Echocardiogr 25:263–271

    Article  PubMed  Google Scholar 

  14. Pollak SJ, McMillan SA, Knopff WD et al (1988) Cardiac evaluation of women distance runners by echocardiographic Doppler flow mapping. J Am Coll Cardiol 11:89–93

    Article  CAS  PubMed  Google Scholar 

  15. D’Andrea A, Naeije R, D’Alto M et al (2011) Range in pulmonary artery systolic pressure among highly trained athletes. Chest 139(4):788–794

    Article  Google Scholar 

  16. Shave R, George K, Whyte G et al (2008) Postexercise changes in left ventricular function: the evidence so far. Med Sci Sports Exerc 40(8):1393–1399

    Article  PubMed  Google Scholar 

  17. La Gerche A, Connelly KA, Mooney DJ et al (2008) Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart 94(7):860–866

    Article  Google Scholar 

  18. Oxborough D, Shave R, Warburton D et al (2011) Dilatation and dysfunction of the right ventricle immediately after ultraendurance exercise: exploratory insights from conventional two-dimensional and speckle tracking echocardiography. Circ Cardiovasc Imaging 4(3):253–263

    Article  PubMed  Google Scholar 

  19. Neilan TG, Januzzi JL, Lee-Lewandrowski E et al (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114(22):2325–2333

    Article  PubMed  Google Scholar 

  20. Kasikcioglu E, Oflaz H, Akhan H, Kayserilioglu A (2005) Right ventricular myocardial performance index and exercise capacity in athletes. Heart Vessels 20:147–152

    Article  PubMed  Google Scholar 

  21. Prakken NH, Velthuis BK, Teske AJ et al (2010) Cardiac MRI reference values for athletes and nonathletes corrected for body surface area, training hours/week and sex. Eur J Cardiovasc Prev Rehabil 17:198–203

    Article  PubMed  Google Scholar 

  22. D’Andrea A, Riegler L, Morra S et al (2012) Right ventricular morphology and function in top-level athletes: a three-dimensional echocardiographic study. J Am Soc Echocardiogr 25(12):1268–1276

    Article  Google Scholar 

  23. King G, Almuntaser I, Murphy RT et al (2013) Reduced right ventricular myocardial strain in the elite athlete may not be a consequence of myocardial damage. “Cream masquerades as skimmed milk”. Echocardiography 30(8):929–935

    Article  PubMed  Google Scholar 

  24. Caso P, D’Andrea A, Galderisi M et al (2000) Pulsed Doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am J Cardiol 85(9):1131–1136

    Article  CAS  PubMed  Google Scholar 

  25. Baggish AL, Wang F, Weiner RB et al (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985) 104(4):1121–1128

    Google Scholar 

  26. Bidart CM, Abbas AE, Parish JM et al (2007) The noninvasive evaluation of exercise-induced changes in pulmonary artery pressure and pulmonary vascular resistance. J Am Soc Echocardiogr 20(3):270–275

    Article  PubMed  Google Scholar 

  27. La Gerche A, Heidbuchel H, Burns AT et al (2011) Disproportionate exercise load and remodeling of the athlete’s right ventricle. Med Sci Sports Exerc 43(6):974–981

    Article  Google Scholar 

  28. La Gerche A, MacIsaac AI, Burns AT et al (2010). Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise. J Appl Physiol 109(5):1307–1317

    Article  Google Scholar 

  29. Bossone E, Rubenfire M, Bach DS et al (1999) Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J Am Coll Cardiol 33(6):1662–1666

    Article  CAS  PubMed  Google Scholar 

  30. Lewis GD, Bossone E, Naeije R et al (2013). Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128(13):1470–1479

    Article  PubMed  Google Scholar 

  31. Lewis GD, Murphy RM, Shah RV et al (2011) Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail 4(3):276–285

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34(4):888–894

    Article  CAS  PubMed  Google Scholar 

  33. La Gerche A, Burns AT, D’Hooge J et al (2012) Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr 25(3):253–262 e1

    Article  Google Scholar 

  34. Trivax JE, Franklin BA, Goldstein JA et al (2010) Acute cardiac effects of marathon running. J Appl Physiol 108(5):1148–1153

    Article  CAS  PubMed  Google Scholar 

  35. Neilan TG, Yoerger DM, Douglas PS et al (2006) Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J 27(9):1079–1084

    Article  PubMed  Google Scholar 

  36. Mousavi N, Czarnecki A, Kumar K et al (2009) Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol 103(10):1467–1472

    Article  PubMed  Google Scholar 

  37. Douglas PS, O’Toole ML, Hiller WD, Reichek N (1990) Different effects of prolonged exercise on the right and left ventricles. J Am Coll Cardiol 15(1):64–69

    Article  CAS  PubMed  Google Scholar 

  38. Elliott AD, La Gerche A (2014) The right ventricle following prolonged endurance exercise: are we overlooking the more important side of the heart? A meta-analysis. Br J Sports Med. pii: bjsports-2014-093895. doi:10.1136/bjsports-2014-093895 (Epub ahead of print)

  39. Shave R, Baggish A, George K et al (2010) Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol 56(3):169–176

    Article  CAS  PubMed  Google Scholar 

  40. Shave R, George KP, Atkinson G et al (2007) Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc 39(12):2099–2106

    Article  CAS  PubMed  Google Scholar 

  41. La Gerche A, Robberecht C, Kuiperi C et al (2010)Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 96(16):1268–1274

    Article  Google Scholar 

  42. Dello Russo A, Pieroni M, Santangeli P et al (2011) Concealed cardiomyopathies in competitive athletes with ventricular arrhythmias and an apparently normal heart: role of cardiac electroanatomical mapping and biopsy. Heart Rhythm 8(12):1915–1922

    Article  Google Scholar 

  43. Zeppilli P, Santini C, Palmieri V et al (1994) Role of myocarditis in athletes with minor arrhythmias and/or echocardiographic abnormalities. Chest 106(2):373–380

    Article  CAS  PubMed  Google Scholar 

  44. O’Hanlon R, Wilson M, Wage R et al (2010) Troponin release following endurance exercise: is inflammation the cause? a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 12:38

    Article  Google Scholar 

  45. Breuckmann F, Mohlenkamp S, Nassenstein K et al (2009) Myocardial late gadolinium enhancement: prevalence, pattern, and prognostic relevance in marathon runners. Radiology 251(1):50–57

    Article  PubMed  Google Scholar 

  46. Mohlenkamp S, Lehmann N, Breuckmann F et al (2008) Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29(15):1903–1910

    Article  PubMed  Google Scholar 

  47. Wilson M, O’Hanlon R, Prasad S et al (2011) Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol 110(6):1622–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Benito B, Gay-Jordi G, Serrano-Mollar A et al (2011) Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 123(1):13–22

    Article  PubMed  Google Scholar 

  49. Pelliccia A, Maron BJ, De Luca R et al (2002) Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation 105(8):944–949

    Article  PubMed  Google Scholar 

  50. Luthi P, Zuber M, Ritter M et al (2008) Echocardiographic findings in former professional cyclists after long-term deconditioning of more than 30 years. Eur J Echocardiogr 9(2):261–267

    PubMed  Google Scholar 

  51. Karjalainen J, Kujala UM, Kaprio J et al (1998) Lone atrial fibrillation in vigorously exercising middle aged men: case-control study. BMJ 316(7147):1784–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Grimsmo J, Grundvold I, Maehlum S, Arnesen H (2010) High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings and possible predictors – a 28–30 years follow-up study. Eur J Cardiovasc Prev Rehabil 17(1):100–105

    Article  PubMed  Google Scholar 

  53. Molina L, Mont L, Marrugat J et al (2008) Long-term endurance sport practice increases the incidence of lone atrial fibrillation in men: a follow-up study. Europace 10(5):618–623

    Article  PubMed  Google Scholar 

  54. Mont L, Sambola A, Brugada J et al (2002) Long-lasting sport practice and lone atrial fibrillation. Eur Heart J 23(6):477–482

    Article  CAS  PubMed  Google Scholar 

  55. Elosua R, Arquer A, Mont L et al (2006) Sport practice and the risk of lone atrial fibrillation: a case-control study. Int J Cardiol 108(3):332–337

    Article  PubMed  Google Scholar 

  56. Baldesberger S, Bauersfeld U, Candinas R et al (2008) Sinus node disease and arrhythmias in the long-term follow-up of former professional cyclists. Eur Heart J 29(1):71–78

    Article  PubMed  Google Scholar 

  57. Heidbuchel H, Anne W, Willems R et al (2006) Endurance sports is a risk factor for atrial fibrillation after ablation for atrial flutter. Int J Cardiol 107(1):67–72

    Article  PubMed  Google Scholar 

  58. La Gerche A, Schmied CM (2013) Atrial fibrillation in athletes and the interplay between exercise and health. Eur Heart J 34(47):3599–3602

    Article  Google Scholar 

  59. Abdulla J, Nielsen JR (2009) Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace 11(9):1156–1159

    Article  PubMed  Google Scholar 

  60. Biffi A, Maron BJ, Verdile L et al (2004) Impact of physical deconditioning on ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol 44(5):1053–1058

    Article  PubMed  Google Scholar 

  61. Biffi A, Pelliccia A, Verdile L et al (2002) Long-term clinical significance of frequent and complex ventricular tachyarrhythmias in trained athletes. J Am Coll Cardiol 40(3):446–452

    Article  PubMed  Google Scholar 

  62. Heidbuchel H, Hoogsteen J, Fagard R et al (2003) High prevalence of right ventricular involvement in endurance athletes with ventricular arrhythmias. Role of an electrophysiologic study in risk stratification. Eur Heart J 24(16):1473–1480

    Article  PubMed  Google Scholar 

  63. La Gerche A (2015) Defining the interaction between exercise and arrhythmogenic right ventricular cardiomyopathy. Eur J Heart Fail 17(2):128–131

    Article  Google Scholar 

  64. Galderisi M, Cardim N, D’Andrea A et al (2015). The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. pii: jeu323 (Epub ahead of print)

  65. Cardim N, Galderisi M, Edvardsen T et al (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging. pii: jeu291 (Epub ahead of print)

  66. Kim JH, Noseworthy PA, McCarty D et al (2011) Significance of electrocardiographic right bundle branch block in trained athletes. Am J Cardiol 107(7):1083–1089

    Article  PubMed  Google Scholar 

  67. Brosnan M, La Gerche A, Kalman J et al (2014) Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am J Cardiol 113(9):1567–1573

    Article  PubMed  Google Scholar 

  68. Whitman I, Patel VV, Soliman EZ et al (2013) Validity of the surfaceelectrocardiogram criteria for right ventricular hypertrophy: the MESA-RV Study (Multi-Ethnic Study of Atherosclerosis-Right Ventricle). J Am Coll Cardiol 63:672e68 1

    Google Scholar 

  69. Zaidi A, Ghani S, Sheikh N et al (2013) Clinical significance of electrocardiographic right ventricular hypertrophy in athletes: comparison with arrhythmogenic right ventricular cardiomyopathy and pulmonary hypertension. Eur Heart J 34:3649e3656

    Google Scholar 

  70. Schattke S, Wagner M, Hättasch R et al (2012) Single beat 3D echocardiography for the assessment of right ventricular dimension and function after endurance exercise: intraindividual comparison with magnetic resonance imaging. Cardiovasc Ultrasound 10:6

    Article  PubMed Central  PubMed  Google Scholar 

  71. Prakken NH, Teske AJ, Cramer MJ et al (2012) Head-to-head comparison between echocardiography and cardiac MRI in the evaluation of the athlete’s heart. Br J Sports Med 46(5):348–354

    Article  PubMed  Google Scholar 

  72. Oomah SR, Mousavi N, Bhullar N et al (2011) The role of three-dimensional echocardiography in the assessment of right ventricular dysfunction after a half marathon: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 24(2):207–213

    Article  PubMed  Google Scholar 

  73. Valsangiacomo Buechel ER, Mertens LL (2012) Imaging the right heart: the use of integrated multimodality imaging. Eur Heart J 33(8):949–960

    Article  Google Scholar 

  74. Karlstedt E, Chelvanathan A, Da Silva M et al (2012) The impact of repeated marathon running on cardiovascular function in the aging population. J Cardiovasc Magn Reson 14:58

    Article  PubMed Central  PubMed  Google Scholar 

  75. Franzen E, Mangold S, Erz G et al (2013) Comparison of morphological and functional adaptations of the heart in highly trained triathletes and long-distance runners using cardiac magnetic resonance imaging. Heart Vessels 28(5):626–631

    Article  PubMed  Google Scholar 

  76. Kalliokoski KK, Nuutila P, Laine H et al (2002) Myocardial perfusion and perfusion reserve in endurance-trained men. Med Sci Sports Exerc 34(6):948–953

    Article  PubMed  Google Scholar 

  77. Laaksonen MS, Kalliokoski KK, Luotolahti M et al (2007) Myocardial perfusion during exercise in endurance-trained and untrained humans. Am J Physiol Regul Integr Comp Physiol 293(2):R837–R843

    Article  CAS  PubMed  Google Scholar 

  78. Kjaer A, Meyer C, Wachtell K et al (2005) Positron emission tomographic evaluation of regulation of myocardial perfusion in physiological (elite athletes) and pathological (systemic hypertension) left ventricular hypertrophy. Am J Cardiol 96(12):1692–1698

    Article  PubMed  Google Scholar 

  79. Gargiulo P, Cuocolo A, Dellegrottaglie S et al (2015) Nuclear assessment of right ventricle. Echocardiography 32(Suppl 1):69–74

    Article  Google Scholar 

  80. Nichols KJ, Jain D (2007) Right ventricular parameters: prospect for routine assessment by equilibrium radionuclide angiographic SPECT. Nucl Med Commun 28:155–157

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. A. D’Andrea, A. La Gerche, E. Golia, R. Padalino, R. Calabrò, M.G. Russo, and E. Bossone state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D’Andrea MD.

Additional information

A. D’Andrea and A. La Gerche contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, A., La Gerche, A., Golia, E. et al. Physiologic and pathophysiologic changes in the right heart in highly trained athletes. Herz 40, 369–378 (2015). https://doi.org/10.1007/s00059-015-4220-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4220-8

Keywords

Schlüsselwörter

Navigation