Skip to main content
Log in

Chalcones as promising pesticidal agents against diamondback moth (Plutella xylostella): microwave-assisted synthesis and structure–activity relationship

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of chalcones (A–CH=CH–CO–B) were synthesized under microwave irradiation, and for the first time their pesticidal activity against diamondback moth (Plutella xylostella) was evaluated to identify the promising lead structures. The structure–activity relationship (SAR) analysis revealed that electron-withdrawing substituents on ring A of chalcone provided good pesticidal agents, whereas, ring B can bear either electron-withdrawing or electron-releasing substituents. Moreover, compound 22 having para-Cl substitution on ring A as well on ring B showed maximum activity with LC50 value of 170.24 μg mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. Annu Rev Entomol 18:265–267

    CAS  Google Scholar 

  • Awasthi SK, Mishra N, Dixit SK, Singh A, Yadav M, Yadav SS, Rathaur S (2009) Antifilarial activity of 1,3-diarylpropen-1-one: effect on glutathione-S-transferase, a phase II detoxification enzyme. Am J Trop Med Hyg 80:764–768

    PubMed  CAS  Google Scholar 

  • Batovska D, Parushev S, Stamboliyska B, Tsvetkova I, Ninova M, Najdenski H (2009) Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur J Med Chem 44:2211–2218

    Article  PubMed  CAS  Google Scholar 

  • Begum NA, Roy N, Laskar RA, Roy K (2011) Mosquito larvicidal studies of some chalcone analogues and their derived products: structure–activity relationship analysis. Med Chem Res 20:184–191

    Article  CAS  Google Scholar 

  • Bhardwaj A, Tewary DK, Kumar R, Kumar V, Sinha AK, Shanker A (2010) Larvicidal and structure-activity studies of natural phenylpropanoids and their semisynthetic derivatives against the tobacco armyworm, Spodoptera litura (Fab.). (Lepidoptera: Noctuidae). Chem Biodivers 7:168–177

    Article  PubMed  CAS  Google Scholar 

  • Das BP, Begum NA, Choudhury DN, Banerji J (2005) Larvicidal studies of chalcones and their derivatives. J Indian Chem Soc 82:161–164

    CAS  Google Scholar 

  • de la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178

    Article  PubMed  Google Scholar 

  • Dimmock JR, Elias DW, Beazely MA, Kandepu NM (1999) Bioactivities of chalcones. Curr Med Chem 6:1125–1149

    PubMed  CAS  Google Scholar 

  • Dong F, Jian C, Zhenghao F, Kai G, Zuliang L (2008) Synthesis of chalcones via Claisen–Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal Commun 9:1924–1927

    Article  Google Scholar 

  • Eskenazi B, Bradman A, Castorina R (1999) Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect 107:409–413

    Article  PubMed  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Univ Press, Cambridge, UK

    Google Scholar 

  • Gautam N, Chourasia OP (2010) Synthesis, antimicrobial and insecticidal activity of some new cinnoline based chalcones and cinnoline based pyrazoline derivatives. Indian J chem 49B:830–835

    CAS  Google Scholar 

  • Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, Gutteridge CE, Waters NC (2009) Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg Med Chem Lett 19:1982–1985

    Article  PubMed  CAS  Google Scholar 

  • Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:483–499

    CAS  Google Scholar 

  • Gonza′lez JA, Braun AE (1998) Effect of (E)-chalcone on potato-cyst nematodes (Globodera pallida and G. rostochiensis). J Agric Food Chem 46:1163–1165

    Article  Google Scholar 

  • Jin F, Jin XY, Jin YL, Sohn DW, Kim SA, Sohn DH, Kim YC, Kim HS (2007) Structural requirements of 2′,4′,6′-tris(methoxymethoxy) chalcone derivatives for anti-inflammatory activity: the importance of a 2′-hydroxy moiety. Arch Pharm Res 30:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Sharma A, Sharma N, Sinha AK (2008) Neutral ionic liquid [hmim]Br as a green reagent and solvent for mild and efficient dehydration of benzyl alcohols into (E)-arylalkenes under microwave irradiation. Eur J Org Chem 5577–5582

  • Kumar R, Mohanakrishnan D, Sharma A, Kaushik NK, Kalia K, Sinha AK, Sahal D (2010) Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem 45:5292–5301

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Wilairat P, Go ML (2001) Antimalarial alkoxylated and hydroxylated chalcones: structure-activity relationship analysis. J Med Chem 44:4443–4452

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto T, Yamamoto I (1994) Glutathione conjugates as the activated form of chalcones for glutathione-S-transferase inhibition. J Pestic Sci 19:53–58

    Article  CAS  Google Scholar 

  • Miyata T, Saito T, Noppun V (1986) Studies on the mechanism of diamondback moth resistance of insecticides. In: Talekar NS (ed) Diamondback moth management: proc first int workshop, AVRDC, pp 347–357

  • Modzelewska A, Pettit C, Achanta G, Davidson NE, Huangb P, Khan SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14:3491–3495

    Article  PubMed  CAS  Google Scholar 

  • Nalwar YS, Sayyed MA, Mokle SS, Zanwar PR, Vibhute YB (2009) Synthesis and insect antifeedant activity of some new chalcones against Phenacoccus solanopsis. World J Chem 4:123–126

    CAS  Google Scholar 

  • Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 42:125–137

    Article  PubMed  CAS  Google Scholar 

  • Rushmore TH, Pickett CB (1993) Glutathione-S-transferases, structure regulation and therapeutic implications. J Biol Chem 268:11475–11478

    PubMed  CAS  Google Scholar 

  • Santos L, Pedrosa RC, Correa R, Filho VC, Nunes RJ, Yunes RA (2006) Biological evaluation of chalcones and analogues as hypolipidemic agents. Arch Pharm Chem Life Sci 339:541–546

    Article  CAS  Google Scholar 

  • Schuler TH, Torres DM, Thompson AJ, Denholm I, Devonshire AL, Duce IR, Williamson MS (1998) Toxicological, electrophysiological and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic Biochem Physiol 59:169–182

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Sinha AK (2006) A chemoselective hydrogenation of the olefinic bond of α, β-unsaturated carbonyl compounds in aqueous medium under microwave irradiation. Adv Synth Catal 348:354–360

    Article  CAS  Google Scholar 

  • Sharma A, Sharma N, Kumar R, Sharma UK, Sinha AK (2009) Water promoted cascade rearrangement approach towards α-aryl aldehydes from arylalkenes using N-halosuccinimides: an avenue for asymmetric oxidation using phase transfer cinchona organocatalysis. Chem Commun 5:299–5301

    Google Scholar 

  • Shelton AM, Wyman JA, Cushing NL, Apfelbeck K, Dennehy TJ, Mahr SER, Eigenbrode SD (1993) Insecticide resistance of diamondback moth (Lepidoptera: Plutellidae) in North America. J Econ Entomol 86:11–19

    CAS  Google Scholar 

  • Sinha AK, Joshi BP, Acharya R (2003) Microwave-promoted synthesis of methoxylated benzaldehydes from natural cis-phenylpropenes using NaIO4/OsO4 (cat.). Chem Lett 32:780–781

    Article  CAS  Google Scholar 

  • Sinha AK, Joshi BP, Dogra R (2007) One step conversion of toxic β-asarone from Acorus calamus into 1-(2,4,5-trimethoxyphenyl)-1,2-dihydroxypropane and asaronaldehyde occurring in Piper clusii. Nat Prod Res 15:439–444

    Google Scholar 

  • Song SS (1991) Resistance of diamondback moth (Plutella xylostella L.: Yponomeutidae:Lepidoptera) against Bacillus thuringiensis Berliner. Kor J Appl Entomol 30:291–293

    Google Scholar 

  • Sonoda S, Ashfaq M, Tsumuki H (2006) Genomic organization and developmental expression of glutathione-S-transferase genes of the diamondback moth, Plutella xylostella. J Insect Sci 6:1–9

    Article  PubMed  Google Scholar 

  • Sun C (1990) Insecticide resistance in diamondback moth. In: Talekar NS (ed) Diamondback moth management: proc second int workshop, AVRDC, pp 419–426

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Google Scholar 

  • Talekar NS, Griggs TD (1986) Diamondback moth management. in Proc First International Workshop, Tainan, Taiwan

    Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology and management of the diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Tewary DK, Bhardwaj A, Sharma A, Sinha AK, Shanker A (2006) Bioactivity and structure–activity relationship of natural methoxylated phenylpropenes and their derivatives against Aphis craccivora Koch (Hemiptera: Aphididae). J Pest Sci 79:209–214

    Article  Google Scholar 

  • Verkerk RHJ, Wright DJ (1996) Multitrophic interactions and management of the diamondback moth: a review. Bull Entomol Res 86:205–216

    Article  Google Scholar 

  • Villarini M, Moretti M, Pasquini R, Scassellati-Sforzolini G, Fatigoni C, Marcarelli M, Monarca S, Rodríguez AV (1998) In vitro genotoxic effects of the insecticide deltamethrin in human peripheral blood leukocytes: DNA damage (‘comet’ assay) in relation to the induction of sister-chromatid exchanges and micronuclei. Toxicology 15:129–139

    Article  Google Scholar 

  • Zhao JZ, Collins HL, Li YX, Mau RF, Thompson GD, Hertlein MS, Andaloro JT, Boyken R, Shelton AM (2006) Monitoring of diamondback moth resistance to spinosad, indoxacarb and emamectin benzoate. J Econ Entomol 99:176–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

R. K is indebted to CSIR, New Delhi, for the award of research fellowship. The authors are thankful to Mr. S. Kumar for the technical support provide during NMR and mass spectroscopy. The authors gratefully acknowledge the financial assistance from project MLP-0025 and thank Director IHBT (CSIR), Palampur for providing the necessary infrastructure for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sharma, P., Shard, A. et al. Chalcones as promising pesticidal agents against diamondback moth (Plutella xylostella): microwave-assisted synthesis and structure–activity relationship. Med Chem Res 21, 922–931 (2012). https://doi.org/10.1007/s00044-011-9602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9602-8

Keywords

Navigation