Skip to main content
Log in

Boolean Witt vectors and an integral Edrei–Thoma theorem

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A subtraction-free definition of the big Witt vector construction was recently given by the first author. This allows one to define the big Witt vectors of any semiring. Here we give an explicit combinatorial description of the big Witt vectors of the Boolean semiring. We do the same for two variants of the big Witt vector construction: the Schur Witt vectors and the p-typical Witt vectors. We use this to give an explicit description of the Schur Witt vectors of the natural numbers, which can be viewed as the classification of totally positive power series with integral coefficients, first obtained by Davydov. We also determine the cardinalities of some Witt vector algebras with entries in various concrete arithmetic semirings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissen, M., Edrei, A., Schoenberg, I.J., Whitney, A.: On the generating functions of totally positive sequences. Proc. Natl. Acad. Sci. USA 37, 303–307 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aissen, M., Schoenberg, I.J., Whitney, A.M.: On the generating functions of totally positive sequences I. J. Anal. Math. 2, 93–103 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloch, S.: Algebraic \(K\)-theory and crystalline cohomology. Inst. Hautes Études Sci. Publ. Math. 47, 187–268 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borger, J.: \(\Lambda \)-Rings and the field with one element. arXiv:0906.3146v1

  5. Borger, J.: Witt vectors, semirings, and total positivity. In: Thas, K. (ed.) Absolute Arithmetic and \({\mathbb{F}}_1\)-Geometry. European Mathematical Society Publishing House, Zurich (2015). arXiv:1310.3013v1

  6. Chatzistamatiou, A.: Big de Rham–Witt cohomology: basic results. Doc. Math. 19, 567–599 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Connes, A.: The Witt construction in characteristic one and quantization. In: Connes, A., Gorokhovsky, A., Lesch, M., Pflaum, M., Rangipour, D. (eds.) Noncommutative Geometry and Global Analysis, volume 546 of Contemporary Mathematics, pp. 83–113. American Mathematical Society, Providence (2011)

    Chapter  Google Scholar 

  8. Connes, A., Consani, C,: The universal thickening of the field of real numbers. arXiv:1202.4377v2

  9. Davydov, A.A.: Totally positive sequences and \(R\)-matrix quadratic algebras. J. Math. Sci. (N.Y.) 100(1), 1871–1876 (2000). (Algebra, 12)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edrei, A.: On the generating functions of totally positive sequences II. J. Anal. Math. 2, 104–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golan, J.S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, volume 54 of Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow (1992)

  12. Hesselholt, L.: The big de Rham–Witt complex. Acta Math. 214(1), 135–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hesselholt, L., Madsen, I.: On the \(K\)-theory of nilpotent endomorphisms. In: Greenlees, J.P.C. (ed.) Homotopy Methods in Algebraic Topology (Boulder, CO, 1999), volume 271 of Contemporary Mathematics, pp. 127–140. American Mathematical Society, Providence (2001)

    Chapter  Google Scholar 

  14. Illusie, L.: Finiteness, duality, and Künneth theorems in the cohomology of the de Rham–Witt complex. In: Algebraic Geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Mathematics, pp. 20–72. Springer, Berlin (1983)

  15. Kerov, S.V.: Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, volume 219 of Translations of Mathematical Monographs. American Mathematical Society, Providence (2003). (Translated from the Russian manuscript by N. V. Tsilevich, with a foreword by A. Vershik and comments by G. Olshanski)

  16. Kerov, S., Okounkov, A., Olshanski, G.: The boundary of the Young graph with Jack edge multiplicities. Int. Math. Res. Not. 4, 173–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langer, A., Zink, T.: De Rham–Witt cohomology for a proper and smooth morphism. J. Inst. Math. Jussieu 3(2), 231–314 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Macdonald, I.G.: Symmetric Functions and Hall Polynomials Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, New York (1995). (With contributions by A. Zelevinsky, Oxford Science Publications)

    Google Scholar 

  19. Okounkov, A.: On representations of the infinite symmetric group. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2), 166–228, 294 (1997)

  20. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, volume 203 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  21. Salem, R.: Power series with integral coefficients. Duke Math. J. 12, 153–172 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schoenberg, I.J.: Some analytical aspects of the problem of smoothing. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 351–370. Interscience Publishers, New York (1948)

  23. Stanley, R.P.: Enumerative Combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997). (With a foreword by Gian-Carlo Rota. Corrected reprint of the 1986 original)

    Book  Google Scholar 

  24. Stanley, R.P.: Enumerative Combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). (With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin)

    Book  Google Scholar 

  25. Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z. 85, 40–61 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  26. van Leeuwen, M.A.A.: The Littlewood–Richardson rule, and related combinatorics. arXiv:math/9908099v1

  27. Vershik, A.M., Kerov, S.V.: Asymptotic theory of the characters of a symmetric group. Funktsional. Anal. i Prilozhen. 15(4), 15–27 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Borger.

Additional information

James Borger: Supported by the Australian Research Council, DP120103541 and FT110100728.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borger, J., Grinberg, D. Boolean Witt vectors and an integral Edrei–Thoma theorem. Sel. Math. New Ser. 22, 595–629 (2016). https://doi.org/10.1007/s00029-015-0198-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0198-6

Keywords

Mathematics Subject Classification

Navigation