Skip to main content
Log in

Representation of the quantum plane, its quantum double, and harmonic analysis on \(GL_q^+(2,\mathbb{R })\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We give complete detail of the description of the GNS representation of the quantum plane \(\mathcal{A }\) and its dual \({\widehat{\mathcal{A }}}\) as a von Neumann algebra. In particular, we obtain a rather surprising result that the multiplicative unitary \(W\) is manageable in this quantum semigroup context. We study the quantum double group construction introduced by Woronowicz, and using Baaj and Vaes’ construction of the multiplicative unitary \(\mathbf{W}_m\), we give the GNS description of the quantum double \(\mathcal{D }(\mathcal{A })\) which is equivalent to \(GL_q^+(2,\mathbb{R })\). Furthermore, we study the fundamental corepresentation \(T^{\lambda ,t}\) and its matrix coefficients, and show that it can be expressed by the \(b\)-hypergeometric function. We also study the regular corepresentation and representation induced by \(\mathbf{W}_m\) and prove that the space of \(L^2\) functions on the quantum double decomposes into the continuous series representation of \(U_{q\widetilde{q}}(\mathfrak{gl }(2,\mathbb{R }))\) with the quantum dilogarithm \(|S_b(Q+2i\alpha )|^2\) as the Plancherel measure. Finally, we describe certain representation theoretic meaning of integral transforms involving the quantum dilogarithm function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Vaes, S.: Double crossed products of locally compact quantum groups. J. Inst. Math. Jussieu 4, 135–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bytsko, A.G., Teschner, K.: R-operator, co-product and Haar-measure for the modular double of \(U_q({\mathfrak{sl}}(2,{\mathbb{R}}))\). Commun. Math. Phys. 240, 171–196 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chekhov, L., Fock, V.V.: A quantum teichmüller space. Theor. Math. Phys. 120, 511–528 (1999)

    MathSciNet  Google Scholar 

  4. Demidov, E.E., Manin, Yu.I., Mukhin, E.E., Zhdanovich, D.V.: Non-standard quantum deformations of \(GL(n)\) and constant solutions of the Yang-Baxter equation. Prog. Theor. Phys. (Supp No.102), 203–218 (1990)

  5. Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faddeev, L.D., Volkov, AYu.: Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B 315(3,4), 311–318 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of the quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Frenkel, I.: Lectures on Quaternionic Analysis and Representation Theory. Yale University (2006) Unpublished

  9. Frenkel, I., Jardim, M.: Quantum instantons with classical moduli spaces. Commun. Math. Phys. 237(3), 471–505 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Frenkel, I., Kim, H.: Quantum Teichmüller space From quantum plane. arXiv:1006.3895v1 (2010)

  11. Frenkel, I., Libine, M.: Quaternionic analysis, representation theory and physics. Adv. Math 218, 1806–1877 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goncharov, A.B.: Pentagon relation for the quantum dilogarithm and quantized \({\cal {M}}_{0,5}^{cyc}\). Prog. Math. 256, 413–426 (2007)

    Google Scholar 

  13. Groenevelt, W., Koelink, E., Kustermans, J.: The dual quantum group for the quantum group analog of the normalizer of \(SU(1,1)\) in \(SL(2,{\mathbb{C}})\). Int. Math. Res. Not. 7, 1167–1314 (2010)

    MathSciNet  Google Scholar 

  14. Ip, I.: The Classical Limit of Representation Theory of the Quantum Plane. arXiv:1012.4145v1 [math.RT] (2010)

  15. Ip, I.: The Graphs of Quantum Dilogarithm. arXiv:1108.5376v1 [math.QA] (2011)

  16. Kahng, B.-J.: Twisting of the Quantum Double and the Weyl Algebra. arXiv:0809.0098v1 [math.OA] (2008)

  17. Kashaev, R.M.: The Heisenberg double and the pentagon relation. St. Petersburg Math. J. 8, 585–592 (1997)

    MathSciNet  Google Scholar 

  18. Kashaev, R.M.: The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39, 269–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kashaev, R.M.: Quantization of Teichmüller spaces and the quantum dilogarithm. Lett. Math. Phys. 43, 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kashaev, R.M.: The quantum dilogarithm and Dehn twist in quantum Teichmüller theory. In: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 25–30 Sept 2000), NATO Sci. Ser. II Math. Phys. Chem., vol. 35, pp. 211–221. Kluwer, Dordrecht (2001)

  21. Kashaev, R.M., Nakanishi, T.: Classical and Quantum Dilogarithm Identities. arXiv:1104.4630v2 [math.QA] (2011)

  22. Kharchev, S., Lebedev, D., Semenov-Tian-Shanksy, M.: Unitary representations of \(U_q({\mathfrak{sl}}(2,{\mathbb{R}}))\), the modular double, and the multiparticle \(q\)-deformed Toda chain. Commun. Math. Phys. 225(3), 573–609 (2002)

    Article  MATH  Google Scholar 

  23. Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of \(SU(1,1)\) in \(SL(2,{\mathbb{C}})\). Commun. Math. Phys. 233(2), 231–296 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ecole Norm. Sup. (4) 33, 837–934 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Kustermans, J., Vaes, S.: Locally compact quantum groups in the von Neumann algebraic setting. Math. Scand. 92, 68–92 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  27. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y., Ueno, K.: Unitary representations of the quantum group \(SU_q(1,1)\): I, II. Lett. Math. Phys. 19, 187–204 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Ueno, K.: Representations of the quantum group \(SU_q(2)\) and the little \(q\)-Jacobi polynomials. J. Funct. Anal. 99, 357–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals, Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  30. Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys. 130, 381–431 (1990)

    Article  MATH  Google Scholar 

  31. Ponsot, B., Teschner, J.: Liouville Bootstrap Via Harmonic Analysis on a Noncompact Quantum Group. arXiv: hep-th/9911110 (1999)

  32. Ponsot, B., Teschner, J.: Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \({\cal {U}}_{q}({\mathfrak{sl}}(2,{\mathbb{R}}))\). Commun. Math. Phys 224, 613–655 (2001)

    Article  MathSciNet  Google Scholar 

  33. Pukánszky, L.: On the Kronecker products of irreducible representations of the \(2\times 2\) real unimodular group. I. Trans. Am. Math. Soc. 100(1), 116–152 (1961)

    Article  MATH  Google Scholar 

  34. Pusz, W.: Quantum \(GL(2,{\mathbb{C}})\) group as double group over \(^{\prime }az+b^{\prime }\) quantum group. Rep. Math. Phys. 49, 113–122 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pusz, W., Woronowicz, S.L.: A new quantum deformation of ’\(ax+b\)’ group. Commun. Math. Phys. 259, 325–362 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ruijsenaars, S.N.M.: A unitary joint eigenfunction transform for the \(A\Delta O^{\prime }s\,\exp (ia_{\pm } d/dz)+\exp (2\pi z/a_{\mp })\). J. Nonlinear Math. Phys. 12(Suppl. 2), 253–294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schirrmacher, A., Wess, J., Zumino, B.: The two-parameter deformation of \(GL(2)\), its differential calculus, and Lie algebra. Z. Phys. C Part. Fields 49, 317–324 (1991)

    Article  MathSciNet  Google Scholar 

  38. Schmüdgen, K.: Operator representations of \({\mathbb{R}}_q^2\). Publ. RIMS Kyoto Univ. 29, 1030–1061 (1993)

    Google Scholar 

  39. Takesaki, M.: Tomita’s Theory of Modular Hilbert Algebras and its Applications. Lecture Notes in Mathematics, vol. 128. Springer, Berlin (1970)

  40. Timmermann, T.: An Invitation to Quantum Groups and Duality. EMS Textbooks in Mathematics (2008)

  41. van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342, 917–932 (1994)

    Article  MATH  Google Scholar 

  42. van de Bult, F.J.: Hyperbolic Hypergeometric Functions. Ph. D. thesis, University of Amsterdam (2007)

  43. Vilenkin, N.: Special Functions and the Theory of Group Representations, Monographs, vol. 22. AMS, Providence (1968)

  44. Volkov, A.Y.: Noncommutative hypergeometry. Commun. Math. Phys. 258(2), 257–273 (2005)

    Article  MATH  Google Scholar 

  45. Woronowicz, S.L.: From multiplicative unitaries to quantum groups. Int. J. Math. 7(1), 127–149 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Woronowicz, S.L., Zakrzewski, S.: Quantum ’\(ax+b\)’ group. Rev. Math. Phys. 14(7&8), 797–828 (2002)

    Google Scholar 

Download references

Acknowledgments

I would like to thank my advisor Professor Igor Frenkel for suggesting the current project and providing useful insights into the problems. I would also like to thank L. Faddeev for pointing out several useful references, and to J. Teschner and Hyun Kyu Kim for helpful discussions. This work was partially supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Chi-Ho Ip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ip, I.CH. Representation of the quantum plane, its quantum double, and harmonic analysis on \(GL_q^+(2,\mathbb{R })\) . Sel. Math. New Ser. 19, 987–1082 (2013). https://doi.org/10.1007/s00029-012-0112-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-012-0112-4

Keywords

Mathematics Subject Classification (2010)

Navigation