Selecta Mathematica

, Volume 18, Issue 4, pp 839–854

Dehn surgeries and negative-definite four-manifolds

Authors

    • School of Mathematics and StatisticsUniversity of Glasgow
  • Sašo Strle
    • Faculty of Mathematics and PhysicsUniversity of Ljubljana
Article

DOI: 10.1007/s00029-012-0086-2

Cite this article as:
Owens, B. & Strle, S. Sel. Math. New Ser. (2012) 18: 839. doi:10.1007/s00029-012-0086-2
  • 144 Views

Abstract

Given a knot K in the three-sphere, we address the question: Which Dehn surgeries on K bound negative-definite four-manifolds? We show that the answer depends on a number m(K), which is a smooth concordance invariant. We study the properties of this invariant and compute it for torus knots.

Keywords

Dehn surgerySmooth negative-definite four-manifoldTorus knotConcordance

Mathematics Subject Classification (2000)

57M2757Q60
Download to read the full article text

Copyright information

© Springer Basel AG 2012