Skip to main content
Log in

Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean’s mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the ocean´s MDT and a new approach based on edge-enhancing diffusion (EED) filtering is presented. EED filters enable controlling the direction and magnitude of the filtering, with subsequent enhancement of computations of the associated surface geostrophic currents (SGCs). Applying this method to a smooth MDT and to a noisy MDT, both for a region in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering preserves all the advantages that the Perona and Malik filter have over the standard linear isotropic Gaussian filters. Moreover, EED is shown to be more stable and less influenced by outliers. This suggests that the EED filtering strategy would be preferred given its capabilities in controlling/preserving the SGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertella A., and Rummel R. (2009) On the spectral consistency of the altimetric ocean and geoid surface: a one-dimensional example. J Geodesy, 83:805–815. doi:10.1007/s00190-008-0299-5.

  • Andersen O.B., and Knudsen P. (2009) DNSC08 mean sea surface and mean dynamic topography. J Geophys Res, 114, C11. doi:10.1029/2008JC005179.

  • Bingham R., Haines K., and Hughes C. (2008) Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid, J Atmos Ocean Tech, 25 (10),1808–1822. doi:10.1175/2008JTECHO568.1.

  • Bingham R.J. (2010) Nonlinear anisotropic diffusive filtering applied to the ocean’s mean dynamic topography. Remote Sens Lett, 1:4, 205–212. doi:10.1080/01431161003743165.

  • Bingham RJ., Knudsen P., Andersen O., and Pail R. (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett, 38:L01606. doi:10.1029/2010GL045633.

  • Crank, J. (1975) The mathematics of diffusion. (Oxford Science Publications, 1975).

  • EGG-C (European GOCE Gravity Consortium) (2009) GOCE high level processing facility: GOCE level 2 product data handbook (http://www.esa.int/esaLP/GTCVCKSC_LPgoce_0.html).

  • Hernandez F., and Schaeffer P. (2001) The CLS01 MSS: A validation with the GSFC00.1 surface. Tech rep., CLS, Ramonville St Agne, 14 pp.

  • Hughes C.W., and Bingham R.J. (2006) An oceanographers guide to GOCE and the geoid. Ocean Sci Discuss, 3, 1543–1568. doi:10.5194/osd-3-1543-2006.

  • Jekeli C. (1981) Alternative methods to smooth the Earth’s gravity field, Tech. Rep. 327, Dep. of Geod. Sci. and Surv., Ohio State Univ., Columbus.

  • Knudsen P., Andersen O.B., Bingham R.J., and Rio M.H. (2011), A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geodesy. doi:10.1007/s00190-011-0485-8.

  • Lagerloef G.S.E., Mitchum G.T., Lukas R.B., and Niiler P.P. (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data, J Geophy Res, 104(C10), 23,313–23,326. doi:10.1029/1999JC900197.

  • Lumpkin R., and Garraffo Z., (2005) Evaluating the Decomposition of Tropical Atlantic Drifter Observations. J Atmos Ocean Techn I 22, 1403–1415. doi:http://dx.doi.org/10.1175/JTECH1793.1.

  • Niiler P.P. (2001) The world ocean surface circulation. In Ocean Circulation and Climate, G. Siedler, J. Church and J. Gould, eds., Academic Press, Volume 77 of International Geophysics Series, 193–204. doi:10.1016/S0074-6142(01)80119-4.

  • Pail R., Goiginger H., Mayrhofer R., Schuh W.D., Brockmann J.M., Krasbutter I., Höck E., and Fecher T. (2010) GOCE grafity field model derived from orbit and gradiometry data applying the time-wise method. Proc. ESA Living Planet Symposium. Bergen,Norway, 28 June–2 July 2010 (ESA SP-686, December 2010).

  • Pail R., Bruinsma S., Migliaccio F., Foerste C., Goiginger H., Schuhand W.D., Hoeck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sanso F., and Tscherning C. (2011) First GOCE gravity field models derived by three different approaches. J Geodesy, 85:819–843. doi:10.1007/s00190-011-0467-x.

  • Perona P., and Malik J. (1990) Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE transactions on Pattern Analysis and Machine Intelligence, 12, pp. 629–639.

  • Sanchez-Reales J.M., Vigo M.I., Jin S.G., and Chao B.F. (2012) Global Surface Geostrophic Ocean Currents Derived from Satellite Altimetry and GOCE Geoid. Marine Geodesy, 35:sup1, 175–189.

  • Slobbe D.C., Simons F.J., and Klees R. (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid. J Geodesy. doi:10.1007/s00190-012-0543-x.

  • Sybrandy A.L., and Niiler P.P. (1991) WOCE/TOGA Lagrangian drifter construction manual. WOCE Rep. 63, SOI Ref. 91/6, 58 pp, Scripps Inst. of Oceanogr., La Jolla, Calif.

  • Tapley B., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pastor R., Pekker T., Poole S., and Wang F. (2005) GGM02-An improved Earth gravity field model from GRACE. J. Geodesy, doi:10.1007/s00190-005-0480-z.

  • Wahr, J., Molenaar, M., and Bryan, F., 1998. Time-Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE, J. Geophys. Res., 103, 30205–30230.

  • Weickert J. (1996) Theoretical foundations of anisotroic diffusion in image processing. Computing, Suppl.11, pp. 221–236.

  • Weickert J., and Benhamouda B. (1997) Why the Perona-Malik filter works. Københavns Universitet, Datalogisk Institut.

  • Weickert J. (1998) Anisotropic Diffusion in Image Processing. ECMI. B.G. Teubner, Stuttgart.

Download references

Acknowledgments

This work is supported by projects AYA2009-07981 and CGL2010-12153-E from the Spanish Department of Science and Innovation (MICINN). ESA is acknowledged for the use of the GOCE data; NOAA for the use of drifter data; and AVISO for the use of the altimetric data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Sánchez-Reales.

Appendix: Practical Implementation of the Filters

Appendix: Practical Implementation of the Filters

1.1 1.1 Gaussian Filter

The Gaussian filter was applied in the spectral domain as proposed by Jekeli (1981). This is by filtering the spherical harmonic coefficients W n by,

$$W_{n + 1} = - \frac{2l - 1}{b}W_{n} + W_{n - 1}$$
(7)

where n denotes the harmonic degree; W 0  = 1/2π, W 1  = W 0 (1 + exp(−2b))/(1 − exp(−2b)) − W 0 /b, and b = log2/(1 − cos(r/a)), r being the half wavelength and a the mean equatorial radius of the Earth.

1.2 1.2 Perona and Malik Filter

Following the same notation in Sect. 2, the PMF sets (2) as

$$I_{t} = {\text{div}}(g(\left| {\nabla I} \right|^{2} )\cdot\nabla I)$$
(8)

where g(.) was defined in (3). A simple discretization of (8) is provided by Perona and Malik (1990):

$$I_{i,j}^{t + 1} = I_{i,j}^{t} + {\text{d}}t[c_{N} \varDelta_{N} I_{i,j} + c_{S} \varDelta_{S} I_{i,j} + c_{E} \varDelta_{E} I_{i,j} + c_{W} \varDelta_{W} I_{i,j} ]^{t}$$
(9)

which defines the iterative process to filter the original grid I 0  = MDT for any location (i, j). In (9), \(\varDelta_{m}\) indicates the nearest neighbor differences for m = N,S,E,W (north, south, east, and west; e.g. \(\varDelta_{N} = I_{i + 1,j} - I_{i,j}\)). The conduction coefficients cm are estimated from (3), being \(c_{m} = g(\varDelta_{m} )\). Here the time-step is required to be 0 < dt ≤ 1/4 for the numerical scheme to be stable. It was set to dt = 0.1 as for the EED.

1.3 1.3 Edge Enhancing Diffusion

To perform the EED filter we first determine the structure tensor J 0 and convolve it with a Gaussian filter K σ to obtain the regularized structure tensor J σ . In this case, the pre-filtering implied by K σ is carried out in the geographical domain and applied to MDTs determined as described in data section. Weighting the eigenvalues from J σ by (3) the diffusion tensor D is determined as described in Sect. 2. Then, if

$$D = \left( {\begin{array}{*{20}c} a & b \\ b & c \\ \end{array} } \right),$$
(10)

the diffusion Eq. (2) can be rewritten as

$$I_{i,j}^{t + 1} = I_{i,j}^{t} + {\text{d}}t[\partial_{x} (a\partial_{x} I_{i,j} ) + \partial_{x} (b\partial_{y} I_{i,j} ) + \partial_{y} (b\partial_{x} I_{i,j} ) + \partial_{y} (c\partial_{y} I_{i,j} )]^{t}$$
(11)

which defines the iterative process to filter the original grid I 0 = MDT for any location (i, j). Partial differential equations in (11) were discretized as following central differences. That is,

$$\partial_{x} (a\partial_{x} I_{i,j} ) = \frac{1}{2}\left[ {a_{i + 1,j} \frac{{I_{i + 1,j} - I_{i,j} }}{2} + a_{i - 1,j} \frac{{I_{i - 1,j} - I_{i,j} }}{2}} \right]$$
(12)
$$\partial_{x} (b\partial_{y} I_{i,j} ) = \frac{1}{4}\left[ {b_{i + 1,j} \frac{{I_{i + 1,j + 1} - I_{i + 1,j - 1} }}{4} + b_{i - 1,j} \frac{{I_{i - 1,j + 1} - I_{i - 1,j - 1} }}{4}} \right]$$
(13)
$$\partial_{y} (b\partial_{x} I) = \frac{1}{4}\left[ {b_{i,j + 1} \frac{{I_{i + 1,j + 1} - I_{i - 1,j + 1} }}{4} + b_{i,j - 1} \frac{{I_{i + 1,j - 1} - I_{i - 1,j - 1} }}{4}} \right]$$
(14)
$$\partial_{y} (c\partial_{y} I) = \frac{1}{2}\left[ {c_{i,j + 1} \frac{{I_{i,j + 1} - I_{i,j} }}{2} + c_{i,j - 1} \frac{{I_{i,j - 1} - I_{i,j} }}{2}} \right]$$
(15)

The time-step dt in (11) is required to be \({\text{d}}t < \left( {\sum\nolimits_{l} {{1 \mathord{\left/ {\vphantom {1 {{\text{d}}_{l}^{2} }}} \right. \kern-0pt} {{\text{d}}_{l}^{2} }}} } \right)^{ - 1}\) where dl denotes distance from I i,j to any location I l involved in its filtering process (Weicker and Benhamouda 1997). As we are applying EED to filter I i,j from its eight nearest neighbors, dt < 1/6. We set dt = 0.1 for the PMF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Reales, J.M., Andersen, O.B. & Vigo, M.I. Improving Surface Geostrophic Current from a GOCE-Derived Mean Dynamic Topography Using Edge-Enhancing Diffusion Filtering. Pure Appl. Geophys. 173, 871–884 (2016). https://doi.org/10.1007/s00024-015-1050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1050-9

Keywords

Navigation