Skip to main content
Log in

Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The incompressible Navier–Stokes equations are considered in the two-dimensional strip \({\mathbb{R} \times [0,L]}\), with periodic boundary conditions and no exterior forcing. If the initial velocity is bounded, it is shown that the solution remains uniformly bounded for all time, and that the vorticity distribution converges to zero as \({t \to \infty}\). This implies, after a transient period, the emergence of a laminar regime in which the solution rapidly converges to a shear flow described by the one-dimensional heat equation in an appropriate Galilean frame. The approach is constructive and provides explicit estimates on the size of the solution and the lifetime of the turbulent period in terms of the initial Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afendikov A., Mielke A.: Dynamical properties of spatially non-decaying 2D Navier–Stokes flows with Kolmogorov forcing in an infinite strip. J. Math. Fluid. Mech. 7(suppl. 1), S51–S67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrose, D., Kelliher, J., Lopes Filho, M., Nussenzveig Lopes, H.: Serfati solutions to the 2D Euler equations on exterior domains. (2014, preprint) arXiv:1401.2655

  3. Anthony, P., Zelik, S.: Infinite-energy solutions for the Navier–Stokes equations in a strip revisited. Commun. Pure Appl. Anal. 13, 1361–1393 (2014)

  4. Arrieta J., Rodriguez-Bernal A., Cholewa J., Dlotko T.: Linear parabolic equations in locally uniform spaces. Math. Models Methods Appl. Sci. 14, 253–293 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aronson D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergh J., Löfström J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    Google Scholar 

  7. Constantin P., Foias C.: Navier–Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

    Google Scholar 

  8. Coulhon Th.: Ultracontractivity and Nash type inequalities. J. Funct. Anal. 141, 510–539 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coulhon Th., Grigoryan A., Levin D.: On isoperimetric profiles of product spaces. Comm. Anal. Geom. 11, 85–120 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Fabes E.B., Stroock D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96, 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallay Th., Slijepčević S.: Energy flow in formally gradient partial differential equations on unbounded domains. J. Dyn. Differ. Equ. 13, 757–789 (2001)

    Article  MATH  Google Scholar 

  12. Gallay, Th., Slijepčević, S.: Distribution of energy and convergence to equilibria in extended dissipative systems. J. Dyn. Differ. Equ. (2014, in press)

  13. Gallay, Th., Slijepčević, S.: Energy bounds for the two-dimensional Navier–Stokes equations in an infinite cylinder. Commun. Partial Differ. Equ. 39, 1741–1769 (2014)

  14. Giga Y., Matsui S., Sawada O.: Global existence of two dimensional Navier–Stokes flow with non-decaying initial velocity. J. Math. Fluid. Mech. 3, 302–315 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Grigoryan A.: Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoam. 10, 395–452 (1994)

    Article  Google Scholar 

  16. Grigor’yan A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. AMS, Providence (2009)

    Google Scholar 

  17. Kato J.: The uniqueness of nondecaying solutions for the navier–stokes equations. Arch. Ration. Mech. Anal. 169, 159–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maekawa Y., Terasawa Y.: The Navier–Stokes equations with initial data in uniformly local L p spaces. Diff. Int. Equ. 19, 369–400 (2006)

    MATH  MathSciNet  Google Scholar 

  19. Nash J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sawada O., Taniuchi Y.: A remark on L solutions to the 2-D Navier–Stokes equations. J. Math. Fluid Mech. 9, 533–542 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Serfati Ph.: Solutions C en temps, n-log Lipschitz bornées en espace et équation d’Euler. C. R. Acad. Sci. Paris Sér. I Math. 320, 555–558 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Zelik S.: Spatially nondecaying solutions of the 2D Navier–Stokes equation in a strip. Glasg. Math. J. 49, 525–588 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zelik S.: Infinite energy solutions for damped Navier–Stokes equations in \({\mathbb{R}^{2}}\). J. Math. Fluid Mech. 15, 717–745 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gallay.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallay, T., Slijepčević, S. Uniform Boundedness and Long-Time Asymptotics for the Two-Dimensional Navier–Stokes Equations in an Infinite Cylinder. J. Math. Fluid Mech. 17, 23–46 (2015). https://doi.org/10.1007/s00021-014-0188-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0188-z

Mathematics Subject Classification

Keywords

Navigation