Skip to main content

Advertisement

Log in

Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Colonic inflammation is associated with decreased tissue oxygenation, significantly affecting gut homeostasis. However, the crosstalk between O2 consumption and supply in the inflamed tissue are not fully understood. Using a murine model of colitis, we analysed O2 in freshly prepared samples of healthy and inflamed colon tissue. We developed protocols for efficient ex vivo staining of mouse distal colon mucosa with a cell-penetrating O2 sensitive probe Pt-Glc and high-resolution imaging of O2 concentration in live tissue by confocal phosphorescence lifetime-imaging microscopy (PLIM). Microscopy analysis revealed that Pt-Glc stained mostly the top 50–60 μm layer of the mucosa, with high phosphorescence intensity in epithelial cells. Measured O2 values in normal mouse tissue ranged between 5 and 35 μM (4–28 Torr), tending to decrease in the deeper tissue areas. Four-day treatment with dextran sulphate sodium (DSS) triggered colon inflammation, as evidenced by an increase in local IL6 and mKC mRNA levels, but did not affect the gross architecture of colonic epithelium. We further observed an increase in oxygenation, partial activation of hypoxia inducible factor (HIF) 1 signalling, and negative trends in pyruvate dehydrogenase activity and O2 consumption rate in the colitis mucosa, suggesting a decrease in mitochondrial respiration, which is known to be regulated via HIF-1 signalling and pyruvate oxidation rate. These results along with efficient staining with Pt-Glc of rat and human colonic mucosa reveal high potential of PLIM platform as a powerful tool for the high-resolution analysis of the intestinal tissue oxygenation in patients with inflammatory bowel disease and other pathologies, affecting tissue respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eltzschig HK, Carmeliet P (2011) Hypoxia and Inflammation. N Engl J Med 364(7):656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palazon A et al (2014) HIF transcription factors, inflammation, and immunity. Immunity 41(4):518–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7(5):281–287

    Article  PubMed  PubMed Central  Google Scholar 

  4. Colgan SP, Campbell EL, Kominsky DJ (2016) Hypoxia and mucosal inflammation. Annu Rev Pathol 11:77–100

    Article  CAS  PubMed  Google Scholar 

  5. Albenberg L et al (2014) Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 147(5):1055–1063

    Article  PubMed  PubMed Central  Google Scholar 

  6. Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140

    Article  CAS  PubMed  Google Scholar 

  7. Marteyn B et al (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465(7296):355–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colgan SP et al (2015) Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers 3(1–2):e970936

    Article  PubMed  Google Scholar 

  9. Zheng L, Kelly CJ, Colgan SP (2015) Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am J Physiol Cell Physiol 309(6):C350–C360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones SA et al (2007) Respiration of Escherichia coli in the mouse intestine. Infect Immun 75(10):4891–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He G et al (1999) Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci 96(8):4586–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheridan WG, Lowndes RH, Young HL (1990) Intraoperative tissue oximetry in the human gastrointestinal tract. Am J Surg 159(3):314–319

    Article  CAS  PubMed  Google Scholar 

  13. Bäckhed F et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    Article  PubMed  Google Scholar 

  14. Cummins EP et al (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134(1):156–165

    Article  CAS  PubMed  Google Scholar 

  15. Hauser CJ et al (1988) Visceral surface oxygen tension in experimental colitis in the rabbit. J Lab Clin Med 112(1):68–71

    CAS  PubMed  Google Scholar 

  16. Shah YM (2016) The role of hypoxia in intestinal inflammation. Mol Cell Pediatr 3(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bakirtzi K et al (2016) Neurotensin promotes the development of colitis and intestinal angiogenesis via Hif-1α–miR-210 signaling. J Immunol 196(10):4311–4321

    Article  CAS  PubMed  Google Scholar 

  18. Karhausen J et al (2004) Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Investig 114(8):1098–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keely S et al (2014) Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 7(1):114–123

    Article  CAS  PubMed  Google Scholar 

  20. Flück K et al (2015) Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol 9(2):379–390

    Article  PubMed  Google Scholar 

  21. Kelly C et al (2013) Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol 6(6):1110–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rigottier-Gois L (2013) Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7(7):1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dawson A, Trenchard D, Guz A (1965) Small bowel tonometry: assessment of small gut mucosal oxygen tension in dog and man. Nature 206:623–627

    Article  Google Scholar 

  24. Lind Due V et al (2003) Extremely low oxygen tension in the rectal lumen of human subjects. Acta Anaesthesiol Scand 47(3):372

    Article  CAS  PubMed  Google Scholar 

  25. Dmitriev RI et al (2015) Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci 72(2):367–381

    Article  CAS  PubMed  Google Scholar 

  26. Dmitriev RI et al (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2(6):853–866

    Article  CAS  Google Scholar 

  27. Zhdanov AV et al (2015) A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochimica et Biophysica Acta (BBA) Bioenerg

  28. Zhdanov AV et al (2015) Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study. Am J Physiol Cell Physiol 309(7):C501–C509

    Article  CAS  PubMed  Google Scholar 

  29. Okayasu I et al (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98(3):694–702

    Article  CAS  PubMed  Google Scholar 

  30. Kondrashina AV et al (2012) A phosphorescent nanoparticle-based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities. Adv Funct Mater 22(23):4931–4939

    Article  CAS  Google Scholar 

  31. Hynes J et al (2003) Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J Biomol Screen 8(3):264–272

    Article  CAS  PubMed  Google Scholar 

  32. Zhdanov AV et al (2011) Comparative bioenergetic assessment of transformed cells using a cell energy budget platform. Integr Biol (Camb) 3(11):1135–1142

    Article  CAS  Google Scholar 

  33. Perše M, Cerar A (2012) Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol 2012:13

    Google Scholar 

  34. Zhang Y et al (2012) ErbB2 and ErbB3 regulate recovery from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival. Lab Invest 92(3):437–450

    Article  CAS  PubMed  Google Scholar 

  35. Hall LJ et al (2011) Induction and activation of adaptive immune populations during acute and chronic phases of a murine model of experimental colitis. Dig Dis Sci 56(1):79–89

    Article  CAS  PubMed  Google Scholar 

  36. Murphy CT et al (2010) Use of bioluminescence imaging to track neutrophil migration and its inhibition in experimental colitis. Clin Exp Immunol 162(1):188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brint EK et al (2011) Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol 106(2):329–336

    Article  CAS  PubMed  Google Scholar 

  38. Zhdanov AV et al (2015) Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling. Exp Cell Res 330(1):13–28

    Article  CAS  PubMed  Google Scholar 

  39. Kim J-W et al (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  Google Scholar 

  40. Dmitriev RI, Papkovsky DB (2015) Intracellular probes for imaging oxygen concentration: how good are they? Methods Appl Fluoresc 3(3):034001

    Article  Google Scholar 

  41. Glover LE, Colgan SP (2011) Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140(6):1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell EL et al (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40(1):66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reifen R et al (2015) Vitamin A exerts its anti-inflammatory activities in colitis through preservation of mitochondrial activity. Nutrition 31(11):1402-1407

    Article  CAS  PubMed  Google Scholar 

  44. Zhdanov AV et al (2015) Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique. Integr Biol (Camb) 2(9):443–451

    Article  Google Scholar 

  45. Novak E, Mollen K (2015) Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 3:62. doi:10.3389/fcell.2015.00062

    Google Scholar 

  46. Xue X et al (2013) Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145(4):831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donohoe DR et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelly CJ et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662-671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leonel AJ et al (2013) Antioxidative and immunomodulatory effects of tributyrin supplementation on experimental colitis. Br J Nutr 109(8):1396–1407

    Article  CAS  PubMed  Google Scholar 

  50. den Besten G et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  51. Vollmar B, Menger MD (2011) Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg 396(1):13–29

    Article  PubMed  Google Scholar 

  52. Saeidi N et al (2013) Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science 341(6144):406–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gareau MG et al (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Ruslan Dmitriev (University College Cork) for Pt-Glc probe and the IBD research nurse Ms Margot Hurley (Cork University Hospital) for help with clinical sample collection. This work was supported by Enterprise Ireland (D.B.P., Grant CF/2012/2346), Science Foundation Ireland (J.F.C., F.S. Grant Nr 12/RC/2273), and the European Commission FP7 Program (D.B.P., Grant FP7-HEALTH-2012-INNOVATION-304842-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Zhdanov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1. Primers for mouse gene expression analysis (DOCX 13 kb)

Supplemental Table 2. Antibodies for Western blotting analysis (DOCX 12 kb)

18_2016_2323_MOESM3_ESM.docx

Supplemental Table 3. Comparison of O2 values corresponding to the 25th, 50th, and 75th percentiles of the frequency distribution of O2 in colonic mucosa of control and DSS-treated mice (DOCX 13 kb)

18_2016_2323_MOESM4_ESM.docx

Supplemental Methods. Staining of Caco-2 cells with O2 sensitive probes and analysis of probe penetration across cell monolayer (DOCX 15 kb)

Supplemental Fig. 1. Staining with O2 sensitive probes of mouse colon tissue and Caco-2 cells (EPS 34089 kb)

18_2016_2323_MOESM6_ESM.eps

Supplemental Fig. 2. Efficiency of staining of mouse colon tissue with Pt-Glc probe, stability of probe LT signal, and analysis of Pt-Glc probe toxicity on Caco-2 cells (EPS 1287 kb)

Supplemental Fig. 3. Permeability of Pt-Glc probe across Caco-2 monolayer (EPS 12891 kb)

Supplemental Fig. 4. Morphology and Pt-Glc staining of colon tissue (EPS 40715 kb)

18_2016_2323_MOESM9_ESM.eps

Supplemental Fig. 5. Effect of DSS-induced inflammation on the expression of HIF-activated genes in distal colon of colitis and control mice (EPS 677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanov, A.V., Okkelman, I.A., Golubeva, A.V. et al. Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cell. Mol. Life Sci. 74, 141–151 (2017). https://doi.org/10.1007/s00018-016-2323-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2323-x

Keywords

Navigation