Skip to main content
Log in

α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

α-Glucosidases (AGases) and α-1,4-glucan lyases (GLases) catalyze the degradation of α-glucosidic linkages at the non-reducing ends of substrates to release α-glucose and anhydrofructose, respectively. The AGases belong to glycoside hydrolase (GH) families 13 and 31, and the GLases belong to GH31 and share the same structural fold with GH31 AGases. GH13 and GH31 AGases show diverse functions upon the hydrolysis of substrates, having linkage specificities and size preferences, as well as upon transglucosylation, forming specific α-glucosidic linkages. The crystal structures of both enzymes were determined using free and ligand-bound forms, which enabled us to understand the important structural elements responsible for the diverse functions. A series of mutational approaches revealed features of the structural elements. In particular, amino-acid residues in plus subsites are of significance, because they regulate transglucosylation, which is used in the production of industrially valuable oligosaccharides. The recently solved three-dimensional structure of GLase from red seaweed revealed the amino-acid residues essential for lyase activity and the strict recognition of the α-(1 → 4)-glucosidic substrate linkage. The former was introduced to the GH31 AGase, and the resultant mutant displayed GLase activity. GH13 and GH31 AGases hydrate anhydrofructose to produce glucose, suggesting that AGases are involved in the catabolic pathway used to salvage unutilized anhydrofructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AGase:

α-Glucosidase

1,5AnFru:

1,5-Anhydrofructose

CNX:

Calnexin

CRT:

Calreticulin

CtMGAM:

C-terminal subunit of maltase-glucoamylase

CtSI:

C-terminal subunit of sucrose-isomaltase

DG:

Dextran glucosidase

DP:

Degree of polymerization

GAA:

Human acid α-glucosidase

GH:

Glycoside hydrolase family

GLase:

α-1,4-Glucan lyase

HaG:

Halomonas sp. α-glucosidase

MGAM:

Maltase-glucoamylase

NtMGAM:

N-terminal subunit of maltase-glucoamylase

NtSI:

N-terminal subunit of sucrose-isomaltase

O16G:

Oligo-1,6-glucosidase

PL:

Polysaccharide lyase

PsGal31A:

Pedobacter saltans α-galactosidase

SBG:

Sugar beet α-glucosidase

SI:

Sucrose-isomaltase

SmDG:

Streptococcus mutans dextran glucosidase

SOG:

Schwanniomyces occidentalis α-glucosidase

References

  1. Chiba S, Minamiura N (1988) α-Glucosidases. In: The Amylase Research Society of Japan (ed) Handbook of amylases and related enzymes. Pergamon, Oxford, pp 104–116

    Google Scholar 

  2. Kimura A (2000) Molecular anatomy of α-glucosidase. Trends Glycosci Glycotechnol 12:373–380. doi:10.4052/tigg.12.373

    Article  CAS  Google Scholar 

  3. Konishi Y, Okamoto A, Takahashi J, Aitani M, Nakatani N (1994) Effect of Bay m 1099, an α-glucosidase inhibitor, on starch metabolism in germinating wheat seeds. Biosci Biotechnol Biochem 58:135–139. doi:10.1271/bbb.58.135

    Article  CAS  PubMed  Google Scholar 

  4. Hers HG (1963) α-Glucosidase deficiency in generalized glycogen-storage disease (Pombe’s disease). Biochem J 86:11–16. doi:10.1042/bj0860011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kato E, Oikawa K, Takahashi K, Kawabata J (2012) Synthesis and the intestinal glucosidase inhibitory activity of 2-aminoresorcinol derivatives toward an investigation of its binding site. Biosci Biotechnol Biochem 76:1044–1046. doi:10.1271/bbb.120009

    Article  CAS  PubMed  Google Scholar 

  6. Chiba S, Kimura A, Kobori T, Saitoh K (1985) Quantitative determination of disaccharides produced from soluble starch through transglucosylation of the buckwheat α-glucosidase. J Jpn Soc Starch Sci 32:213–216. doi:10.5458/jag1972.32.213

    Article  CAS  Google Scholar 

  7. Yamamoto T, Unno T, Watanabe Y, Yamamoto M, Okuyama M, Mori H, Chiba S, Kimura A (2004) Purification and characterization of Acremonium implicatum α-glucosidase having high regioselectivety for α-1,3-glucosidic linkage. Biochim Biophys Acta 1700:189–198. doi:10.1016/j.bbapap.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  8. Nakai H, Ito T, Hayashi M, Kamiya K, Yamamoto T, Matsubara K, Kim YM, Wongchawalit J, Okuyama M, Mori H, Chiba S, Sano Y, Kimura A (2007) Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie 89:49–62. doi:10.1016/j.biochi.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  9. Nakai H, Tanizawa S, Ito T, Kamiya K, Yamamoto T, Matsubara K, Kim YM, Sakai M, Sato H, Imbe T, Okuyama M, Mori H, Sano Y, Chiba S, Kimura A (2007) Function-unknown glycoside hydrolase family 31 proteins, mRNAs of which were expressed in rice ripening and germinating stages, are α-glucosidase and α-xylosidase. J Biochem 142:491–500. doi:10.1093/jb/mvm174

    Article  CAS  PubMed  Google Scholar 

  10. Hermans MMP, de Graaff E, Kroos MA, Wisselaar HA, Oostra BA, Reuser AJJ (1991) Identification of a point mutation in the human lysosomal α-glucosidase gene causing infantile glycogenosis type II. Biochem Biophys Res Commun 179:919–926. doi:10.1016/0006-291X(91)91906-S

    Article  CAS  PubMed  Google Scholar 

  11. Yu S, Ahmad T, Kenne L, Pedersén M (1995) α-1,4-Glucan lyase, a new class of starch/glycogen degrading enzyme. III. Substrate specificity, mode of action, and cleavage mechanism. Biochim Biophys Acta 1244:1–9. doi:10.1016/0304-4165(94)00202-9

    Article  PubMed  Google Scholar 

  12. Yu S (2008) The anhydrofructose pathway of glycogen catabolism. IUBMB Life 60:798–809. doi:10.1002/iub.125

    Article  CAS  PubMed  Google Scholar 

  13. Yu S, Kenne L, Pedersén M (1993) α-1,4-Glucan lyase, a new class of starch/glycogen degrading enzyme. I. Efficient purification and characterization from red seaweeds. Biochim Biophys Acta 1156:313–320. doi:10.1016/0304-4165(93)90049-E

    Article  CAS  PubMed  Google Scholar 

  14. Bojsen K, Yu S, Kragh KM, Marcussen J (1999) A group of α-1,4-glucan lyases and their genes from the red alga Gracilariopsis lemaneiformis: purification, cloning, and heterologous expression. Biochim Biophys Acta 1430:396–402. doi:10.1016/S0167-4838(99)00017-5

    Article  CAS  PubMed  Google Scholar 

  15. Bojsen K, Yu S, Marcussen J (1999) A family of α-1,4-glucan lyase genes from fungi. Cloning, complete sequencing, and heterologous expression. Plant Mol Biol 40:445–454. doi:10.1023/A:1006231622928

    Article  CAS  PubMed  Google Scholar 

  16. Yu S, Refdahl C, Lundt I (2004) Enzymatic description of the anhydrofructose pathway of glycogen degradation. I. Identification and purification of anhydrofructose dehydratase, ascopyrone tautomerase and α-1,4-glucan lyase in the fungus Anthracobia melaloma. Biochim Biophys Acta 1672:120–129. doi:10.1016/j.bbagen.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Yu S, Fiskesund S (2006) The anhydrofructose pathway and its possible role in stress response and signaling. Biochim Biophys Acta 1760:1314–1322. doi:10.1016/j.bbagen.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  18. Yoshinaga K, Fujisue M, Abe J, Hanashiro I, Takeda Y, Muroya F, Hizukuri S (1999) Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme. Biochim Biophys Acta 1472:447–454. doi:10.1016/S0304-4165(99)00147-6

    Article  CAS  PubMed  Google Scholar 

  19. Meng XJ, Kawahara K, Miyanohara H, Yoshimoto Y, Yoshinaga K, Noma S, Kikuchi K, Morimoto Y, Ito T, Oyama Y et al (2011) 1,5-Anhydro-d-fructose: a natural antibiotic that inhibits the growth of gram-positive bacteria and microbial biofilm formation to prevent nosocomial infection. Exp Ther Med 2:625–628. doi:10.3892/etm.2011.245

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiskesund R, Abeyama K, Yoshinaga K, Abe J, Yuan YB, Yu S (2010) 1,5-Anhydro-d-fructose and its derivatives: biosynthesis, preparation and potential medical applications. Planta Med 76:1635–1641. doi:10.1055/s-0030-1250120

    Article  CAS  PubMed  Google Scholar 

  21. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family into subfamilies: towards improved function annotations of α-amylase-related proteins. Protein Engin Des Sel 19:555–562. doi:10.1093/protein/gzl044

    Article  CAS  Google Scholar 

  22. Shirai T, Hung VS, Morinaka K, Kobayashi T, Ito S (2008) Crystal structure of GH13 α-glucosidase GSJ from one of the deepest sea bacteria. Proteins 73:126–133. doi:10.1002/prot.22044

    Article  CAS  PubMed  Google Scholar 

  23. Shen X, Saburi W, Gai Z, Kato K, Ojima-Kato T, Yu J, Komoda K, Kido Y, Matsui H, Mori H, Yao M (2014) Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallogr D Biol Crystallogr 71:1382–1391. doi:10.1107/S139900471500721X

    Article  CAS  Google Scholar 

  24. Hobbs JK, Jiao W, Easter AD, Parker EJ, Schipper LA, Arcus VL (2013) Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates. ACS Chem Biol 8:2388–2393. doi:10.1021/cb4005029

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe K, Hata Y, Kizaki H, Katsube Y, Suzuki Y (1997) The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J Mol Biol 269:142–153. doi:10.1006/jmb.1997.1018

    Article  CAS  PubMed  Google Scholar 

  26. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A (2008) Substrate recognition mechanism of α-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J Mol Biol 378:911–920. doi:10.1016/j.jmb.2008.03.016

    Article  CAS  Google Scholar 

  27. Møller MS, Fredslund F, Majumder A, Nakai H, Poulsen JC, Lo Leggio L, Svensson B, Abou Hachem M (2012) Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J Bacteriol 194:4249–4259. doi:10.1128/JB.00622-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. MacGregor EA, Janeček Š, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20. doi:10.1016/S0167-4838(00)00302-2

    Article  CAS  PubMed  Google Scholar 

  29. Matsuura Y, Kusunoki M, Harada W, Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95:697–702

    CAS  PubMed  Google Scholar 

  30. Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley α-amylase. J Mol Biol 239:104–121. doi:10.1006/jmbi.1994.1354

    Article  CAS  PubMed  Google Scholar 

  31. Wiegand G, Epp O, Huber R (1995) The crystal structure of porcine pancreatic α-amylase in complex with the microbial inhibitor tendamistat. J Mol Biol 247:99–110. doi:10.1006/jmbi.1994.0125

    Article  CAS  PubMed  Google Scholar 

  32. Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236:590–600. doi:10.1006/jmbi.1994.1168

    Article  CAS  PubMed  Google Scholar 

  33. Ravaud S, Robert X, Watzlawick H, Haser R, Mattes R, Aghajari N (2007) Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. J Biol Chem 282:28126–28136. doi:10.1074/jbc.M704515200

    Article  CAS  PubMed  Google Scholar 

  34. Skov LK, Mirza O, Henriksen A, De Montalk GP, Remaud-Simeon M, Sarçabal P, Willemot RM, Monsan P, Gajhede M (2001) Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J Biol Chem 276:25273–25278. doi:10.1074/jbc.M010998200

    Article  CAS  PubMed  Google Scholar 

  35. Sprogøe D, van den Broek LA, Mirza O, Kastrup JS, Voragen AG, Gajhede M, Skov LK (2004) Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochemistry 43:1156–1162. doi:10.1021/bi0356395

    Article  PubMed  CAS  Google Scholar 

  36. Caner S, Nguyen N, Aguda A, Zhang R, Pan YT, Withers SG, Brayer GD (2013) The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode. Glycobiology 23:1075–1083. doi:10.1093/glycob/cwt044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mirza O, Skov LK, Remaud-Simeon M, de Montalk GP, Albenne C, Monsan P, Gajhede M (2001) Crystal structures of amylosucrase from Neisseria polysaccharea in complex with glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40:9032–9039. doi:10.1021/bi0107061

    Article  CAS  PubMed  Google Scholar 

  38. Mirza O, Skov LK, Sprogøe D, van den Broek LA, Beldman G, Kastrup JS, Gajhede M (2006) Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. J Biol Chem 281:35576–35584. doi:10.1074/jbc.M605611200

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto K, Miyake H, Kusunoki M, Osaki S (2010) Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J 277:4205–4214. doi:10.1111/j.1742-4658.2010.07810.x

    Article  CAS  PubMed  Google Scholar 

  40. Hondoh H, Kuriki T, Matsuura Y (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J Mol Biol 326:177–188. doi:10.1016/S0022-2836(02)01402-X

    Article  CAS  PubMed  Google Scholar 

  41. Koropatkin NM, Smith TJ (2010) SusG: a unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18:200–215. doi:10.1016/j.str.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  42. Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292. doi:10.1016/S0969-2126(98)00032-X

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi M, Hondoh H, Mori H, Saburi W, Okuyama M, Kimura A (2011) Calcium ion-dependent increase in thermostability of dextran glucosidase from Streptococcus mutans. Biosci Biotechnol Biochem 75:1557–1563. doi:10.1271/bbb.110256

    Article  CAS  PubMed  Google Scholar 

  44. Nakao M, Nakayama T, Harada M, Kakudo A, Ikemoto H, Kobayashi S, Shibano Y (1994) Purification and characterization of a Bacillus sp. SAM1606 thermostable α-glucosidase with transglucosylation activity. Appl Microbiol Biotechnol 41:337–343. doi:10.1007/BF00221229

    Article  CAS  PubMed  Google Scholar 

  45. Nishimoto M, Kubota M, Tsuji M, Mori H, Kimura A, Matsui H, Chiba S (2001) Purification and substrate specificity of honeybee, Apis mellifera L., α-glucosidase III. Biosci Biotechnol Biochem 65:1610–1616. doi:10.1271/bbb.65.1610

    Article  CAS  PubMed  Google Scholar 

  46. Needleman RB, Federoff HJ, Eccleshall TR, Buchferer B, Marmur J (1978) Purification and characterization of an α-glucosidase from Saccharomyces carlsbergensis. Biochemistry 17:4657–4661. doi:10.1021/bi00615a011

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki Y, Shinji M, Eto N (1984) Assignment of a p-nitrophenyl α-d-glucopyranosidase of Bacillus stearothermophilus ATCC 12016 to a novel exo-α-1,4-glucosidase active for oligomaltosaccharides and α-glucans. Biochim Biophys Acta 787:281–289. doi:10.1016/0167-4838(84)90321-2

    Article  CAS  Google Scholar 

  48. Ojima T, Saburi W, Yamamoto T, Kudo T (2012) Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-d-glucosylglycerol. Appl Environ Microbiol 78:1836–1845. doi:10.1128/AEM.07514-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khan NA, Eaton NR (1967) Purification and characterization of maltase and α-methyl glucosidase from yeast. Biochim Biophys Acta 146:173–180. doi:10.1016/0005-2744(67)90084-8

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki Y, Aoki R, Hayashi H (1982) Assignment of a p-nitrophenyl-α-d-glucopyranoside-hydrolyzing α-glucosidase of Bacillus cereus ATCC 7064 to an exo-oligo-1,6-glucosidase. Biochim Biophys Acta 704:476–483. doi:10.1016/0167-4838(82)90070-X

    Article  CAS  Google Scholar 

  51. Saburi W, Mori H, Saito S, Okuyama M, Kimura A (2006) Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim Biophys Acta 1764:688–698. doi:10.1016/j.bbapap.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto K, Nakayama A, Yamamoto Y, Tabata S (2004) Val216 decides the substrate specificity of α-glucosidase in Saccharomyces cerevisiae. Eur J Biochem 271:3414–3420. doi:10.1111/j.1432-1033.2004.04276.x

    Article  CAS  PubMed  Google Scholar 

  53. Tsujimoto Y, Tanaka H, Takemura R, Yokogawa T, Shimonaka A, Matsui H, Kashiwabara S, Watanabe K, Suzuki Y (2007) Molecular determinants of substrate recognition in thermostable α-glucosidases belonging to glycoside hydrolase family 13. J Biochem 142:87–93. doi:10.1093/jb/mvm110

    Article  CAS  PubMed  Google Scholar 

  54. Saburi W, Rachi-Otsuka H, Hondoh H, Okuyama M, Mori H, Kimura A (2015) Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family13 exo-glucosidase. FEBS Lett 589:865–869. doi:10.1016/j.febslet.2015.02.023

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto K, Miyake H, Kusunoki M, Osaki S (2011) Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. J Biosci Bioengin 112:545–550. doi:10.1016/j.jbiosc.2011.08.016

    Article  CAS  Google Scholar 

  56. Inohara-Ochiai M, Nakayama T, Goto R, Nakao M, Ueda T, Shibano Y (1997) Altering substrate specificity of Bacillus sp. SAM1606 α-glucosidase by comparative site-specific mutagenesis. J Biol Chem 272:1601–1607. doi:10.1074/jbc.272.3.1601

    Article  CAS  PubMed  Google Scholar 

  57. Noguchi A, Yano M, Ohshima Y, Hemmi H, Inohara-Ochiai M, Okada M, Min KS, Nakayama T, Nishino T (2003) Deciphering the molecular basis of the broad substrate specificity of α-glucosidase from Bacillus sp. SAM1606. J Biochem 134:543–550. doi:10.1093/jb/mvg172

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki Y, Yuki T, Kishigami T, Abe S (1976) Purification and properties of extracellular α-glucosidase of a thermophile, Bacillus thermoglucosidius KP 1006. Biochim Biophys Acta 445:386–397. doi:10.1016/0005-2744(76)90092-9

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki Y, Tomura Y (1986) Purification and characterization of Bacillus coagulans oligo-1,6-glucosidase. Eur J Biochem 158:77–83. doi:10.1111/j.1432-1033.1986.tb09723.x

    Article  CAS  PubMed  Google Scholar 

  60. Noguchi A, Nakayama T, Hemmi H, Nishino T (2003) Altering the substrate chain-length specificity of an α-glucosidase. Biochem Biophys Res Commun 304:684–690. doi:10.1016/S0006-291X(03)00647-8

    Article  CAS  PubMed  Google Scholar 

  61. Majzlová K, Pukajová Z, Janeček S (2013) Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 367:48–57. doi:10.1016/j.carres.2012.11.022

    Article  PubMed  CAS  Google Scholar 

  62. Ojima T, Aizawa K, Saburi W, Yamamoto T (2012) α-Glucosylated 6-gingerol: chemoenzymatic synthesis using α-glucosidase from Hallomonas sp. H11, and its physical properties. Carbohydr Res 354:59–64. doi:10.1016/j.carres.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  63. Nakagawa H, Dobashi Y, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioengin 89:138–144. doi:10.1016/S1389-1723(00)88727-7

    Article  CAS  Google Scholar 

  64. Sato T, Nakagawa H, Kurosu J, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2000) α-Anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. J Biosci Bioengin 90:625–630. doi:10.1263/jbb.90.625

    Article  CAS  Google Scholar 

  65. Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2002) Enzymatic synthesis of α-arbutin by α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioengin 93:328–330. doi:10.1263/jbb.93.328

    Article  CAS  Google Scholar 

  66. Kobayashi M, Saburi W, Nakatsuka D, Hondoh H, Kato K, Okuyama M, Mori H, Kimura A, Yao M (2015) Structural insights into the catalytic reaction that is involved in the reorientation of Trp238 at the substrate-binding site in GH13 dextran glucosidase. FEBS Lett 589:484–489. doi:10.1016/j.febslet.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  67. Fierobe HP, Mirgorodskaya E, McGuire KA, Roepstorff P, Svensson B, Clarke AJ (1998) Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400 → Cys catalytic-base mutant to cysteinesulfinic acid. Biochemistry 37:3743–3752. doi:10.1021/bi972231x

    Article  CAS  PubMed  Google Scholar 

  68. Cockburn DW, Vandenende C, Clarke AJ (2010) Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi. Biochemistry 49:2042–2050. doi:10.1021/bi1000596

    Article  CAS  PubMed  Google Scholar 

  69. Saburi W, Kobayashi M, Mori H, Okuyama M, Kimura A (2013) Replacement of the catalytic nucleophile aspartyl residue of dextran glucosidase by cysteine sulfonate enhances transglucosylation activity. J Biol Chem 288:31670–31677. doi:10.1074/jbc.M113.491449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Standley DM, Toh H, Nakamura H (2007) ASH structure alignment package: sensitivity and selectivity in domain classification. BMC Bioinform 8:116. doi:10.1186/1471-2105-8-116

    Article  CAS  Google Scholar 

  71. Takewaki S, Chiba S, Kimura A, Matsui H, Koike Y (1980) Purification and properties of α-glucosidases of the honey bee Apis mellifera L. Agric Biol Chem 44:731–740. doi:10.1080/00021369.1980.10864027

    CAS  Google Scholar 

  72. Kubota M, Tsuji M, Nishimoto M, Wongchawalit J, Okuyama M, Mori H, Matsui H, Surarit R, Svasti J, Kimura A, Chiba S (2004) Localization of α-glucosidases I, II, and III in organs of European honeybees, Apis mellifera L., and the origin of α-glucosidase in honey. Biosci Biotechnol Biochem 68:2346–2352. doi:10.1271/bbb.68.2346

    Article  CAS  PubMed  Google Scholar 

  73. Kubo T, Sasaki M, Nakamura J, Sasagawa H, Ohashi K, Takeuchi H, Natori S (1996) Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J Biochem 119:291–295

    Article  CAS  PubMed  Google Scholar 

  74. Ueno T, Takeuchi H, Kawasaki K, Kubo T (2015) Changes in the gene expression profiles of the hypopharyngeal gland of worker honeybees in association with worker behavior and hormonal factors. PLoS ONE 10:e0130206. doi:10.1371/journal.pone.0130206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kimura A, Takewaki S, Matsui H, Kubota M, Chiba S (1990) Allosteric properties, substrate specificity, and subsite affinities of honeybee α-glucosidase I. J Biochem 107:762–768

    CAS  PubMed  Google Scholar 

  76. Kimura A, Yoshida-Kitahara F, Chiba S (1987) Characteristics of transglucosylation of honeybee α-glucosidase I. Agric Biol Chem 51:1859–1864. doi:10.1080/00021369.1987.10868294

    CAS  Google Scholar 

  77. Takewaki S, Kimura A, Kubota M, Chiba S (1993) Substrate specificity and subsite affinities of honeybee α-glucosidase II. Biosci Biotechnol Biochem 57:1508–1513. doi:10.1271/bbb.57.1508

    Article  CAS  Google Scholar 

  78. Gabriško M (2013) Evolutionary history of eukaryotic α-glucosidases from the α-amylase family. J Mol Evol 76:129–145. doi:10.1007/s00239-013-9545-4

    Article  PubMed  CAS  Google Scholar 

  79. Wongchawalit J, Yamamoto T, Nakai H, Kim YM, Sato N, Nishimoto M, Okuyama M, Mori H, Saji O, Chanchao C, Wongsiri S, Surarit R, Svasti J, Chiba S, Kimura A (2006) Purification and characterization of α-glucosidase I from Japanese honeybee (Apis cerana japonica) and molecular cloning of its cDNA. Biosci Biotechnol Biochem 70:2889–2898. doi:10.1271/bbb.60302

    Article  CAS  PubMed  Google Scholar 

  80. Kaewmuangmoon J, Kilaso M, Leartsakulpanich U, Kimura K, Kimura A, Chanchao C (2013) Expression of a secretory α-glucosidase II from Apis cerana indica in Pichia pastoris and its characterization. BMC Biotechnol 13:16. doi:10.1186/1472-6750-13-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chanchao C, Pilalam S, Sangvanich P (2008) Purification and characterization of α-glucosidase in Apis cerana indica. Insect Sci 15:217–224. doi:10.1111/j.1744-7917.2008.00203.x

    Article  CAS  Google Scholar 

  82. Nishimoto M, Mori H, Moteki T, Takamura Y, Iwai G, Miyaguchi Y, Okuyama M, Wongchawalit J, Surarit R, Svasti J, Kimura A, Chiba S (2007) Molecular cloning of cDNAs and genes for three α-glucosidases from European honeybees, Apis mellifera L., and heterologous production of recombinant enzymes in Pichia pastoris. Biosci Biotechnol Biochem 71:1703–1716. doi:10.1271/bbb.70125

    Article  CAS  PubMed  Google Scholar 

  83. Ngiwsara L, Iwai G, Tagami T, Sato N, Nakai H, Okuyama M, Mori H, Kimura A (2012) Amino acids in conserved region II are crucial to substrate specificity, reaction velocity, and regioselectivity in the transglucosylation of honeybee GH-13 α-glucosidases. Biosci Biotechnol Biochem 76:1967–1974. doi:10.1271/bbb.120473

    Article  CAS  PubMed  Google Scholar 

  84. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–495. doi:10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  85. Larsbrink J, Izumi A, Hemsworth GR, Davies GJ, Brumer H (2012) Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31. J Biol Chem 287:43288–43299. doi:10.1074/jbc.M112.416511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, Tonozuka T (2015) Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Biochem J 469:145–158. doi:10.1042/bj20150261

    Article  CAS  PubMed  Google Scholar 

  87. Lovering A, Lee S, Kim Y, Withers S, Strynadka N (2005) Mechanistic and structural analysis of a family 31 α-glycosidase and its glycosyl-enzyme intermediate. J Biol Chem 280:2105–2115. doi:10.1074/jbc.M410468200

    Article  CAS  PubMed  Google Scholar 

  88. Ernst H, Lo Leggio L, Willemoes M, Leonard G, Blum P, Larsen S (2006) Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J Mol Biol 358:1106–1124. doi:10.1016/j.jmb.2006.02.056

    Article  CAS  PubMed  Google Scholar 

  89. Sim L, Quezada-Calvillo R, Sterchi E, Nichols B, Rose D (2008) Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J Mol Biol 375:782–792. doi:10.1016/j.jmb.2007.10.069

    Article  CAS  PubMed  Google Scholar 

  90. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J Biol Chem 285:17763–17770. doi:10.1074/jbc.M109.078980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tan K, Tesar C, Wilton R, Keigher L, Babnigg G, Joachimiak A (2010) Novel α-glucosidase from human gut microbiome: substrate specificities and their switch. FASEB J 24:3939–3949. doi:10.1096/fj.10-156257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ren L, Qin X, Cao X, Wang L, Bai F, Bai G, Shen Y (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2:827–836. doi:10.1007/s13238-011-1105-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A (2013) Molecular basis for the recognition of long-chain substrates by plant α-glucosidases. J Biol Chem 288:19296–19303. doi:10.1074/jbc.M113.465211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Larsbrink J, Izumi A, Ibatullin FM, Nakhai A, Gilbert HJ, Davies GJ, Brumer H (2011) Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J 436:567–580. doi:10.1042/BJ20110299

    Article  CAS  PubMed  Google Scholar 

  95. Rozeboom HJ, Yu S, Madrid S, Kalk KH, Zhang R, Dijkstra BW (2013) Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. J Biol Chem 288:26764–26774. doi:10.1074/jbc.M113.485896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim Y, Lovering A, Chen H, Kantner T, McIntosh L, Strynadka N, Withers S (2006) Expanding the thioglycoligase strategy to the synthesis of α-linked thioglycosides allows structural investigation of the parent enzyme/substrate complex. J Am Chem Soc 128:2202–2203. doi:10.1021/ja057904a

    Article  CAS  PubMed  Google Scholar 

  97. Golubev AM, Nagem RA, Brandao Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel’ev AN, Polikarpov I (2004) Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol 339:413–422. doi:10.1016/j.jmb.2004.03.062

    Article  CAS  PubMed  Google Scholar 

  98. Fernandez-Leiro R, Pereira-Rodriguez A, Cerdan ME, Becerra M, Sanz-Aparicio J (2010) Structural analysis of Saccharomyces cerevisiae α-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases. J Biol Chem 285:28020–28033. doi:10.1074/jbc.M110.144584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guce AI, Clark NE, Salgado EN, Ivanen DR, Kulminskaya AA, Brumer H 3rd, Garman SC (2010) Catalytic mechanism of human α-galactosidase. J Biol Chem 285:3625–3632. doi:10.1074/jbc.M109.060145

    Article  CAS  PubMed  Google Scholar 

  100. Fredslund F, Hachem MA, Larsen RJ, Sorensen PG, Coutinho PM, Lo Leggio L, Svensson B (2011) Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 412:466–480. doi:10.1016/j.jmb.2011.07.057

    Article  CAS  PubMed  Google Scholar 

  101. Kroos M, Hoogeveen-Westerveld M, Michelakakis H, Pomponio R, Van der Ploeg A, Halley D, Reuser A (2012) Update of the pompe disease mutation database with 60 novel GAA sequence variants and additional studies on the functional effect of 34 previously reported variants. Hum Mutat 33:1161–1165. doi:10.1002/humu.22108

    Article  PubMed  CAS  Google Scholar 

  102. Moreland RJ, Jin X, Zhang XK, Decker RW, Albee KL, Lee KL, Cauthron RD, Brewer K, Edmunds T, Canfield WM (2005) Lysosomal acid α-glucosidase consists of four different peptides processed from a single chain precursor. J Biol Chem 280:6780–6791. doi:10.1074/jbc.M404008200

    Article  CAS  PubMed  Google Scholar 

  103. Paquet ME, Leach MR, Williams DB (2005) In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control. Methods 35:338–347. doi:10.1016/j.ymeth.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  104. Watanabe T, Totani K, Matsuo I, Maruyama J, Kitamoto K, Ito Y (2009) Genetic analysis of glucosidase II beta-subunit in trimming of high-mannose-type glycans. Glycobiology 19:834–840. doi:10.1093/glycob/cwp061

    Article  CAS  PubMed  Google Scholar 

  105. Totani K, Ihara Y, Matsuo I, Ito Y (2006) Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans. J Biol Chem 281:31502–31508. doi:10.1074/jbc.M605457200

    Article  CAS  PubMed  Google Scholar 

  106. Stigliano ID, Caramelo JJ, Labriola CA, Parodi AJ, D’Alessio C (2009) Glucosidase II beta subunit modulates N-glycan trimming in fission yeasts and mammals. Mol Biol Cell 20:3974–3984. doi:10.1091/mbc.E09-04-0316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pelletier MF, Marcil A, Sevigny G, Jakob CA, Tessier DC, Chevet E, Menard R, Bergeron JJ, Thomas DY (2000) The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10:815–827. doi:10.1093/glycob/10.8.815

    Article  CAS  PubMed  Google Scholar 

  108. Treml K, Meimaroglou D, Hentges A, Bause E (2000) The α- and β-subunits are required for expression of catalytic activity in the hetero-dimeric glucosidase II complex from human liver. Glycobiology 10:493–502. doi:10.1093/glycob/10.5.493

    Article  CAS  PubMed  Google Scholar 

  109. Trombetta ES, Fleming KG, Helenius A (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40:10717–10722. doi:10.1021/bi010629u

    Article  CAS  PubMed  Google Scholar 

  110. Nichols BL, Avery S, Sen P, Swallow DM, Hahn D, Sterchi E (2003) The maltase-glucoamylase gene: common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc Natl Acad Sci USA 100:1432–1437. doi:10.1073/pnas.0237170100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Quezada-Calvillo R, Sim L, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Robayo-Torres CC, Rose DR, Nichols BL (2008) Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J Nutr 138:685–692

    CAS  PubMed  Google Scholar 

  112. Takesue Y, Yokota K, S-i Oda, Takesue S (2001) Comparison of sucrase-free isomaltase with sucrase-isomaltase purified from the house musk shrew Suncus murinus. Biochim Biophys Acta 1544:341–349. doi:10.1016/S0167-4838(00)00248-X

    Article  CAS  PubMed  Google Scholar 

  113. Jones K, Sim L, Mohan S, Kumarasamy J, Liu H, Avery S, Naim HY, Quezada-Calvillo R, Nichols BL, Pinto BM, Rose DR (2011) Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase. Bioorg Med Chem 19:3929–3934. doi:10.1016/j.bmc.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  114. Song KM, Okuyama M, Nishimura M, Tagami T, Mori H, Kimura A (2013) Aromatic residue on β → α loop 1 in the catalytic domain is important to the transglycosylation specificity of glycoside hydrolase family 31 α-glucosidase. Biosci Biotechnol Biochem 77:1759–1765. doi:10.1271/bbb.130325

    Article  CAS  PubMed  Google Scholar 

  115. Sato F, Okuyama M, Nakai H, Mori H, Kimura A, Chiba S (2005) Glucoamylase originating from Schwanniomyces occidentalis is a typical α-glucosidase. Biosci Biotechnol Biochem 69:1905–1913. doi:10.1271/bbb.69.1905

    Article  CAS  PubMed  Google Scholar 

  116. Saburi W, Okuyama M, Kumagai Y, Kimura A, Mori H (2015) Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie 108:140–148. doi:10.1016/j.biochi.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  117. Chiba S (1997) Molecular mechanism in α-glucosidase and glucoamylase. Biosci Biotechnol Biochem 61:1233–1239. doi:10.1271/bbb.61.1233

    Article  CAS  PubMed  Google Scholar 

  118. Frandsen T, Svensson B (1998) Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Mol Biol 37:1–13. doi:10.1023/A:1005925819741

    Article  CAS  PubMed  Google Scholar 

  119. Tagami T, Okuyama M, Nakai H, Kim YM, Mori H, Taguchi K, Svensson B, Kimura A (2013) Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates. Biochim Biophys Acta 1834:329–335. doi:10.1016/j.bbapap.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  120. Tagami T, Yamashita K, Okuyama M, Mori H, Yao M, Kimura A (2015) Structural advantage of sugar beet α-glucosidase to stabilize the Michaelis complex with long-chain substrate. J Biol Chem 290:1796–1803. doi:10.1074/jbc.M114.606939

    Article  PubMed  CAS  Google Scholar 

  121. Tagami T, Tanaka Y, Mori H, Okuyama M, Kimura A (2013) Enzymatic synthesis of acarviosyl-maltooligosaccharides using disproportionating enzyme 1. Biosci Biotechnol Biochem 77:312–319. doi:10.1271/bbb.120732

    Article  CAS  PubMed  Google Scholar 

  122. Gessler K, Uson I, Takaha T, Krauss N, Smith SM, Okada S, Sheldrick GM, Saenger W (1999) V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc Natl Acad Sci USA 96:4246–4251. doi:10.1073/pnas.96.8.4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu S, Bojsen K, Svensson B, Marcussen J (1999) α-1,4-Glucan lyases producing 1,5-anhydro-d-fructose from starch and glycogen have sequence similarity to alpha-glucosidases. Biochim Biophys Acta 1433:1–15. doi:10.1016/S0167-4838(99)00152-1

    Article  CAS  PubMed  Google Scholar 

  124. Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444. doi:10.1042/BJ20101185

    Article  CAS  PubMed  Google Scholar 

  125. Garron ML, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573. doi:10.1093/glycob/cwq122

    Article  CAS  PubMed  Google Scholar 

  126. Lee SS, Yu S, Withers SG (2002) α-1,4-Glucan lyase performs a trans-elimination via a nucleophilic displacement followed by a syn-elimination. J Am Chem Soc 124:4948–4949. doi:10.1021/ja0255610

    Article  CAS  PubMed  Google Scholar 

  127. Lee SS, Yu S, Withers SG (2003) Detailed dissection of a new mechanism for glycoside cleavage: α-1,4-glucan lyase. Biochemistry 42:13081–13090. doi:10.1021/bi035189g

    Article  CAS  PubMed  Google Scholar 

  128. Guillén Schlippe YV, Hedstrom L (2005) A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch Biochem Biophys 433:266–278. doi:10.1016/j.abb.2004.09.018

    Article  PubMed  CAS  Google Scholar 

  129. Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S (2001) Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of α-glucosidase from Schizosaccharomyces pombe. Eur J Biochem 268:2270–2280. doi:10.1046/j.1432-1327.2001.02104.x

    Article  CAS  PubMed  Google Scholar 

  130. Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF (1998) Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr Res 313:235–246. doi:10.1016/S0008-6215(98)00276-6

    Article  CAS  PubMed  Google Scholar 

  131. Cha HJ, Yoo HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH (1998) Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur J Biochem 253:251–262. doi:10.1046/j.1432-1327.1998.2530251.x

    Article  CAS  PubMed  Google Scholar 

  132. Kim MJ, Lee SB, Lee HS, Lee SY, Baek JS, Kim D, Moon TW, Robyt JF, Park KH (1999) Comparative study of the inhibition of α-glucosidase, α-amylase, and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose, and acarviosine-glucose. Arch Biochem Biophys 371:277–283. doi:10.1006/abbi.1999.1423

    Article  CAS  PubMed  Google Scholar 

  133. Kimura A, Lee JH, Lee IS, Park KH, Chiba S, Kim D (2004) Two potent competitive inhibitors discriminating α-glucosidase family I from family II. Carbohydr Res 339:1035–1040. doi:10.1016/j.carres.2003.10.035

    Article  CAS  PubMed  Google Scholar 

  134. Nishio T, Hakamada W, Kimura A, Chiba S, Takatsuki A, Kawachi R, Oku T (2002) Glycon specificity profiling of α-glucosidase using monodeoxy and mono-O-methyl derivatives of p-nitrophenyl α-d-glucopyranoside. Carbohydr Res 337:629–634. doi:10.1016/S0008-6215(02)00026-5

    Article  CAS  PubMed  Google Scholar 

  135. Hehre EJ, Genghof DS, Sternlicht H, Brewer CF (1977) Scope and mechanism of carbohydrase action: stereospecific hydration of d-glucal catalyzed by α- and β-glucosidase. Biochemistry 16:1780–1787. doi:10.1021/bi00628a003

    Article  CAS  PubMed  Google Scholar 

  136. Chiba S, Brewer CF, Okada G, Matsui H, Hehre EJ (1988) Stereochemical studies of d-glucal hydration by α-glucosidases and exo-α-glucanases: indications of plastic and conserved phases in catalysis by glycosylases. Biochemistry 27:1564–1569. doi:10.1021/bi00405a025

    Article  CAS  Google Scholar 

  137. Kim YM, Saburi W, Yu S, Nakai H, Maneesan J, Kang MS, Chiba S, Kim D, Okuyama M, Mori H, Kimura A (2012) α-Glucosidase-catalyzed novel reaction on 1,5-anhydrofructose, suggesting new metabolic pathway for production of glucose from starch. J Biol Chem 287:22441–22444. doi:10.1074/jbc.C112.360909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Matsumura S, Imai K, Yoshikawa S, Kawada K, Uchibori T (1990) Surface-activities, biodegradability and antimicrobial properties of normal-alkyl glucosides mannosides and galactosides. J Am Oil Chem Soc 67:996–1001. doi:10.1007/BF02541865

    Article  CAS  Google Scholar 

  139. Kim YM, Okuyama M, Mori H, Nakai H, Saburi W, Chiba S, Kimura A (2005) Enzymatic synthesis of alkyl α-2-deoxyglucosides by alkyl alcohol resistant α-glucosidase from Aspergillus niger. Tetrahedron-Asymmetry 16:403–409. doi:10.1016/j.tetasy.2004.11.046

    Article  CAS  Google Scholar 

  140. Kita A, Matsui H, Somoto A, Kimura A, Takata M, Chiba S (1991) Substrate specificity and subsite affinities of crystalline α-glucosidase from Aspergillus niger. Agric Biol Chem 55:2327–2335. doi:10.1080/00021369.1991.10870952

    CAS  Google Scholar 

  141. Kimura A, Takata M, Sakai O, Matsui H, Takai N, Takayanagi T, Nishimura I, Uozumi T, Chiba S (1992) Complete amino acid sequence of crystalline α-glucosidase from Aspergillus niger. Biosci Biotechnol Biochem 56:1368–1370. doi:10.1271/bbb.56.1368

    Article  CAS  PubMed  Google Scholar 

  142. Kim YM, Kim D, Kimura A (2008) Enzymatic synthesis of α-2-deoxyglucosyl derivatives catalyzed by organic solvent-resistant α-glucosidase. Biotechnol Bioprocess Eng 13:639–645. doi:10.1007/s12257-008-0057-9

    Article  CAS  Google Scholar 

  143. Hirano K, Ziak M, Kamoshita K, Sukenaga Y, Kametani S, Shiga Y, Roth J, Akanuma H (2000) N-Linked oligosaccharide processing enzyme glucosidase II produces 1,5-anhydrofructose as a side product. Glycobiology 10:1283–1289. doi:10.1093/glycob/10.12.1283

    Article  CAS  PubMed  Google Scholar 

  144. Maneesan J, Matsuura H, Tagami T, Mori H, Kimura A (2014) Production of 1,5-anhydro-d-fructose by an α-glucosidase belonging to glycoside hydrolase family 31. Biosci Biotechnol Biochem 78:2064–2068. doi:10.1080/09168451.2014.943651

    Article  CAS  PubMed  Google Scholar 

  145. Yu S, Mei J, Ahrén B (2004) Basic toxicology and metabolism studies of 1,5-anhydro-d-fructose using bacteria, cultured mammalian cells, and rodents. Food Chem Toxicol 42:1677–1686. doi:10.1016/j.fct.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  146. Matsusaka K, Chiba S, Shimomura T (1977) Purification and substrate specificity of brewer’s yeast α-glucosidase. Agric Biol Chem 41:1917–1923. doi:10.1080/00021369.1977.10862786

    CAS  Google Scholar 

  147. Saeki T, Okuyama M, Mori H, Kimura A, Chiba S (1998) Localization of α-glucosidase in yeast cells. J Appl Glycosci 45:281–283. doi:10.11541/jag1994.45.281

    CAS  Google Scholar 

  148. Janeček Š, Svensson B, MacGregor EA (2007) A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. FEBS Lett 581:1261–1268. doi:10.1016/j.febslet.2007.02.036

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haruhide Mori or Atsuo Kimura.

Additional information

M. Okuyama and W. Saburi are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuyama, M., Saburi, W., Mori, H. et al. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell. Mol. Life Sci. 73, 2727–2751 (2016). https://doi.org/10.1007/s00018-016-2247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2247-5

Keywords

Navigation