Skip to main content

Advertisement

Log in

Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Radiotherapy, a major treatment modality against cancer, can lead to secondary malignancies but it is uncertain as to whether tumor cells that survive ionizing radiation (IR) treatment undergo epithelial–mesenchymal transition (EMT) and eventually become invasive or metastatic. Here, we have tested the hypothesis that the application of IR (10 MeV photon beams, 2–20 Gy) to lung and pancreatic carcinoma cells induces a migratory/invasive phenotype in these cells by hyperactivation of TGF-β and/or activin signaling. In accordance with this assumption, IR induced gene expression patterns and migratory responses consistent with an EMT phenotype. Moreover, in A549 cells, IR triggered the synthesis and secretion of both TGF-β1 and activin A as well as activation of intracellular TGF-β/activin signaling as evidenced by Smad phosphorylation and transcriptional activation of a TGF-β-responsive reporter gene. These responses were sensitive to SB431542, an inhibitor of type I receptors for TGF-β and activin. Likewise, specific antibody-mediated neutralization of soluble TGF-β, or dominant-negative inhibition of the TGF-β receptors, but not the activin type I receptor, alleviated IR-induced cell migration. Moreover, the TGF-β-specific approaches also blocked IR-dependent TGF-β1 secretion, Smad phosphorylation, and reporter gene activity, collectively indicating that autocrine production of TGF-β(s) and subsequent activation of TGF-β rather than activin signaling drives these changes. IR strongly sensitized cells to further increase their migration in response to recombinant TGF-β1 and this was accompanied by upregulation of TGF-β receptor expression. Our data raise the possibility that hyperactivation of TGF-β signaling during radiotherapy contributes to EMT-associated changes like metastasis, cancer stem cell formation and chemoresistance of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ALK5:

Activin receptor-like kinase 5

EMT:

Epithelial–mesenchymal transition

IR:

Irradiation

MAPK:

Mitogen-activated protein kinase

PAI-1:

Plasminogen activator inhibitor-1

PDAC:

Pancreatic ductal adenocarcinoma

TBP:

TATA-box-binding protein

TGF-β:

Transforming growth factor-β

References

  1. Nuevemann D, Christgen M, Ungefroren H, Kalthoff H (2006) Stable expression of temperature-sensitive p53: a suitable model to study wild-type p53 function in pancreatic carcinoma cells. Oncol Rep 16:575–579

    PubMed  CAS  Google Scholar 

  2. Nieder AM, Porter MP, Soloway MS (2009) Radiation therapy for prostate cancer increases subsequent risk of bladder and rectal cancer: a population based cohort study. J Urol 180:2005-2009 (discussion 2009–2010)

  3. von Essen CF (1991) Radiation enhancement of metastasis: a review. Clin Exp Metastasis 9:77–104

    Article  Google Scholar 

  4. Madani I, De Neve W, Mareel M (2008) Does ionizing radiation stimulate cancer invasion and metastasis? Bull Cancer 95:292–300

    PubMed  CAS  Google Scholar 

  5. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403

    Article  PubMed  CAS  Google Scholar 

  6. Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M, Levina V (2013) Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 12:94

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH (2011) Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 8:27–33

    Article  PubMed  CAS  Google Scholar 

  8. Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene 25:7009–7018

    Article  PubMed  CAS  Google Scholar 

  9. Ho JN, Kang GY, Lee SS, Kim J, Bae IH, Hwang SG, Um HD (2010) Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci 101:1417–1423

    Article  PubMed  CAS  Google Scholar 

  10. Du S, Barcellos-Hoff MH (2013) Tumors as organs: biologically augmenting radiation therapy by inhibiting transforming growth factor β activity in carcinomas. Semin Radiat Oncol. 23:242–251

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dancea HC, Shareef MM, Ahmed MM (2009) Role of Radiation-induced TGF-beta signaling in cancer therapy. Mol Cell Pharmacol. 1:44–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti SC, Barcellos-Hoff MH (2011) TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Yi JY, Kim MR, Lee J, An YS, Jin YB, Park IC, Chung E, Shin I, Barcellos-Hoff MH (2014) TGF-beta1 protects cells from gamma-IR by enhancing the activity of the NHEJ repair pathway. Mol Cancer Res 13:319–329

    PubMed  Google Scholar 

  15. Andarawewa KL, Erickson AC, Chou WS, Costes SV, Gascard P, Mott JD, Bissell MJ, Barcellos-Hoff MH (2007) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67:8662–8670

    Article  PubMed  CAS  Google Scholar 

  16. Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO (2007) Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 43:1214–1224

    Article  PubMed  CAS  Google Scholar 

  17. Zhou YC, Liu JY, Li J, Zhang J, Xu YQ, Zhang HW, Qiu LB, Ding GR, Su XM, Shi M, Guo GZ (2011) Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys 81:1530–1537

    Article  PubMed  CAS  Google Scholar 

  18. Inman GJ, Nicolás FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  PubMed  CAS  Google Scholar 

  19. Laping NJ, Grygielko E, Mathur A et al (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  PubMed  CAS  Google Scholar 

  20. Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H, Ungefroren H (2002) Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem 277:36118–36128

    Article  PubMed  CAS  Google Scholar 

  21. Mandel K, Seidl D, Rades D, Lehnert H, Gieseler F, Hass R, Ungefroren H (2013) Characterization of spontaneous and TGF-β-induced cell motility of primary human normal and neoplastic mammary cells in vitro using novel real-time technology. PLoS One 8:e56591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ungefroren H, Sebens S, Giehl K, Helm O, Groth S, Fändrich F, Röcken C, Sipos B, Lehnert H, Gieseler F (2014) Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling. Oncotarget 5:277–290

    Article  PubMed  PubMed Central  Google Scholar 

  23. Forrester HB, Ivashkevich A, McKay MJ, Leong T, de Kretser DM, Sprung CN (2013) Follistatin is induced by ionizing radiation and potentially predictive of radiosensitivity in radiation-induced fibrosis patient derived fibroblasts. PLoS One 8:e77119

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M, Kadin ME, Lodish HF (1996) A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 16:3480–3489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhang Q, Yu N, Lee C (2014) Vicious cycle of TGF-β signaling in tumor progression and metastasis. Am J Clin Exp Urol 2:149–155

    PubMed  PubMed Central  Google Scholar 

  26. Loomans HA, Andl CD (2014) Intertwining of activin A and TGFβ signaling: dual roles in cancer progression and cancer cell invasion. Cancers (Basel) 7:70–91

    Article  Google Scholar 

  27. O’Malley Y, Zhao W, Barcellos-Hoff MH, Robbins ME (1999) Radiation-induced alterations in rat mesangial cell Tgfb1 and Tgfb3 gene expression are not associated with altered secretion of active Tgfb isoforms. Radiat Res 152:622–628

    Article  PubMed  Google Scholar 

  28. Martin M, Vozenin MC, Gault N, Crechet F, Pfarr CM, Lefaix JL (1997) Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene 15:981–989

    Article  PubMed  CAS  Google Scholar 

  29. Ogino H, Yano S, Kakiuchi S, Muguruma H, Ikuta K, Hanibuchi M, Uehara H, Tsuchida K, Sugino H, Sone S (2008) Follistatin suppresses the production of experimental multiple-organ metastasis by small cell lung cancer cells in natural killer cell-depleted SCID mice. Clin Cancer Res 14:660–667

    Article  PubMed  CAS  Google Scholar 

  30. Planque C, Kulasingam V, Smith CR, Reckamp K, Goodglick L, Diamandis EP (2009) Identification of five candidate lung cancer biomarkers by proteomics analysis of conditioned media of four lung cancer cell lines. Mol Cell Proteomics 8:2746–2758

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Chen F, Ren P, Feng Y, Liu H, Sun Y, Liu Z, Ge J, Cui X (2014) Follistatin is a novel biomarker for lung adenocarcinoma in humans. PLoS One 9:e111398

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ahmed MM, Alcock RA, Chendil D et al (2002) Restoration of transforming growth factor-beta signaling enhances radiosensitivity by altering the Bcl-2/Bax ratio in the p53 mutant pancreatic cancer cell line MIA PaCa-2. J Biol Chem 277:2234–2246

    Article  PubMed  CAS  Google Scholar 

  33. Drabsch Y, ten Dijke P (2012) TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568

    Article  PubMed  CAS  Google Scholar 

  34. Bloom BB, Humphries DE, Kuang PP, Fine A, Goldstein RH (1996) Structure and expression of the promoter for the R4/ALK5 human type I transforming growth factor-beta receptor: regulation by TGF-beta. Biochim Biophys Acta 1312:243–248

    Article  PubMed  Google Scholar 

  35. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH (2007) New rationales for using TGFbeta inhibitors in radiotherapy. Int J Radiat Biol 83:803–811

    Article  PubMed  CAS  Google Scholar 

  36. Calone I, Souchelnytskyi S (2012) Inhibition of TGFβ signaling and its implications in anticancer treatments. Exp Oncol 34:9–16

    PubMed  CAS  Google Scholar 

  37. Zhang M, Lahn M, Huber PE (2012) Translating the combination of TGFβ blockade and radiotherapy into clinical development in glioblastoma. Oncoimmunology 1:943–945

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are indebted to H. Albrecht and S. Grammerstorf-Rosche for excellent technical assistance. We thank Drs. J. Massagué (NY), K. Miyazono (Tokyo, Japan), C.-H. Heldin (Uppsala, Sweden) and P. Knaus (Berlin, Germany) for generously providing plasmid vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Ungefroren.

Additional information

C. Carl and A. Flindt contributed equally.

F. Gieseler and H. Ungefroren contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 134 kb)

Supplementary material 2 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carl, C., Flindt, A., Hartmann, J. et al. Ionizing radiation induces a motile phenotype in human carcinoma cells in vitro through hyperactivation of the TGF-beta signaling pathway. Cell. Mol. Life Sci. 73, 427–443 (2016). https://doi.org/10.1007/s00018-015-2003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2003-2

Keywords

Navigation