Skip to main content
Log in

Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Membrane proteins are key elements in cell physiology and drug targeting, but getting a high-resolution structure by crystallographic means is still enormously challenging. Novel strategies are in big demand to facilitate the structure determination process that will ultimately hasten the day when sequence information alone can provide a three-dimensional model. Cell-free or in vitro expression enables rapid access to large quantities of high-quality membrane proteins suitable for an array of applications. Despite its impressive efficiency, to date only two membrane proteins produced by the in vitro approach have yielded crystal structures. Here, we have analysed synergies of cell-free expression and crystallisation in lipid mesophases for generating an X-ray structure of the integral membrane enzyme diacylglycerol kinase to 2.28-Å resolution. The quality of cellular and cell-free-expressed kinase samples has been evaluated systematically by comparing (1) spectroscopic properties, (2) purity and oligomer formation, (3) lipid content and (4) functionality. DgkA is the first membrane enzyme crystallised based on cell-free expression. The study provides a basic standard for the crystallisation of cell-free-expressed membrane proteins and the methods detailed here should prove generally useful and contribute to accelerating the pace at which membrane protein structures are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The detection limit for lipid using TLC is ~1 µg (1 µg lipid = 1 × 10−6 g/750 g mol−1 = 1.3 × 10−9 mol = 1.3 nmol lipid) assuming an average lipid molecular weight of 750 g mol−1. The amount of Δ7 DgkA sample used in the analysis was 120 µg (120 µg = 120 × 10−6 g/14,318 g mol−1 = 8.4 × 10-9 mol = 8.4 nmol DgkA). The lipid content of the protein is therefore less than (1.3/8.4) 0.16 mol lipid per mol Δ7 DgkA.

  2. By comparing the staining intensity in the S30 sample lane (Lane 4) with the lipid standards (Lanes 1–3) in Fig. 5, it is possible to estimate that the lipid in the S30 extract in Lane 4 corresponds to ~3 μg total lipid. 2 μL of extracted S30 lipid dissolved in chloroform was spotted in Lane 4. The total volume of the S30 lipid extract was 20 μL representing 30 μg total lipid derived from 0.3 mL S30 solution. This corresponds to 100 μg lipid/mL S30 extract.

  3. Following the procedure outlined in Footnote 2, the membrane lipid content in dry E. coli cells can be estimated. Lane 5 in Fig. 6 corresponds to ~6 μg total lipid from 2 μL lipid extract. The total volume of the lipid extract was 10 mL which corresponds to 30 mg membrane lipid derived from 1 g wet cells (0.31 g dry cell mass [30]. Thus, the membrane lipid content of dry E. coli cells is estimated at 10 %. A value of 9.1 % lipid has been reported [31].

  4. The approximate cost for a 1-mL cell free reaction is as follows: S30 extract: €0.43, plasmid: €2.14, T7 polymerase: €0.34, amino acids: €0.35, folinic acid: €0.07, RNA inhibitor: €12.43, tRNA: €6.46, pyruvate kinase: €0.28, AcP: €18.33, PEP: €18.40, NTP mix: €8.81, protease inhibitor: €3.33, HEPES: €0.22, PEG 8,000: €0.02, DTT: € 0.02, magnesium acetate, potassium acetate and sodium azide: € 0.04, dialysis cassette: €9.87. Total of €81.54.

Abbreviations

ADP:

Adenosine diphosphate

ARII:

Acetabularia acetabulum rhodopsin II

ATP:

Adenosine triphosphate

C12E8 :

n-octaethylene glycol monododecyl ether

C8E4 :

n-octyl tetraethylene glycol monoether

CL:

Cardiolipin

CTP:

Cytidine triphosphate

CV:

Column volume

DgkA:

Diacylglycerol kinase

DDM:

n-dodecyl-β-d-maltopyranoside

DM:

n-decyl-β-d-maltopyranoside

DNA:

Deoxyribonucleic acid

DTT:

DL-dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycoltetraacetic acid

GFP:

Green fluorescent protein

GTP:

Guanosine triphosphate

HCl:

Hydrochloric acid

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HRP:

Horseradish peroxidase

hVDAC1:

Human voltage-dependent anion channel 1

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

kDa:

Kilodalton

LCP:

Lipid cubic phase

LDAO:

Lauryldimethylamine N-oxide

MAG:

Monoacylglycerol

MPD:

2-methyl-2,4-pentanediol

MWCO:

Molecular weight cut off

NADH :

Nicotinamide adenine dinucleotide

OD:

Optical density

PCR:

Polymerase chain reaction

PE:

Phosphatidylethanolamine

PEG:

Polyethyleneglycol

PEP:

Phosphenolpyruvic acid

PK:

Pyruvate kinase

PG:

Phosphatidylglycerol

PIPES :

Piperazine-1,4-bis(2-ethanesulfonic acid

PMSF:

Phenylmethanesulfonylfluoride or phenylmethylsulfonyl fluoride

RMSD:

Root-mean-square deviation

RNA:

Ribonucleic acid

SEC:

Size-exclusion chromatography

TCEP:

tris (2-carboxyethyl) phosphine hydrochloride

TLC:

Thin-layer chromatography

tRNA:

Transfer ribonucleic acid

UTP:

Uridine triphosphate

YPTG:

Yeast phosphate tryptone glucose

References

  1. Schwarz D, Junge F, Durst F, Frolich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957

    Article  CAS  PubMed  Google Scholar 

  2. Chen YJ, Pornillos O, Lieu S, Ma C, Chen AP, Chang G (2007) X-ray structure of EmrE supports dual topology model. Proc Natl Acad Sci USA 104:18999–19004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S (2011) Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol 411:986–998

    Article  CAS  PubMed  Google Scholar 

  4. Walsh JP, Bell RM (1986) sn-1,2-Diacylglycerol kinase of Escherichia coli. Structural and kinetic analysis of the lipid cofactor dependence. J Biol Chem 261:5062–5069

    Google Scholar 

  5. Raetz CRH, Newman KF (1979) Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol 137:860–868

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Badola P, Sanders CR (1997) Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J Biol Chem 272:24176–24182

    Article  CAS  PubMed  Google Scholar 

  7. Savage DF, Anderson CL, Robles-Colmenares Y, Newby ZE, Stroud RM (2007) Cell-free complements in vivo expression of the E. coli membrane proteome. Protein Sci 16:966–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Li D, Lyons J, Pye VE, Vogeley L, Aragão D, Kenyon CP, Shah ST, Doherty C, Aherne M, Caffrey M (2013) Crystal structure of the integral membrane diacylglycerol kinase. Nature 497:521–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Caffrey M, Lyons J, Smyth T, Hart DJ (2009) Current topics in membranes, DeLucas L (ed), Academic Press, Burlington, pp 83–108

  10. Coleman BE, Cwynar V, Hart DJ, Havas F, Mohan JM, Patterson S, Ridenour S, Schmidt M, Smith E, Wells AJ (2004) Modular approach to the synthesis of unsaturated 1-monoacyl glycerols. Synlett 8:1339–1342

    Google Scholar 

  11. Li D, Caffrey M (2011) Lipid cubic phase as a membrane mimetic for integral membrane protein enzymes. Proc Natl Acad Sci USA 108:8639–8644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sanders CR, Czerski L, Vinogradova O, Badola P, Song D, Smith SO (1996) Escherichia coli diacylglycerol kinase is an alpha-helical polytopic membrane protein and can spontaneously insert into preformed lipid vesicles. Biochemistry 35:8610–8618

    Article  CAS  PubMed  Google Scholar 

  13. Tanzer ML, Gilvarg C (1959) Creatine and creatine kinase measurement. J Biol Chem 234:3201–3204

    CAS  PubMed  Google Scholar 

  14. Chen AH, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  Google Scholar 

  15. Rouser G, Fleische S, Yamamoto A (1970) Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494–496

    Article  CAS  PubMed  Google Scholar 

  16. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  17. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80:374–381

    Article  CAS  PubMed  Google Scholar 

  18. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Vis Exp 45:e1712

    Google Scholar 

  19. Li D, Boland C, Walsh K, Caffrey M (2012) Use of a robot for high-throughput crystallization of membrane proteins in lipidic mesophases. J Vis Exp 67:e4000

    PubMed  Google Scholar 

  20. Li D, Boland C, Aragao D, Walsh K, Caffrey M (2012) Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J Vis Exp 67:e4001

    PubMed  Google Scholar 

  21. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst 43:186–190

    Article  CAS  Google Scholar 

  22. Kabsch W (2010) XDS. Acta Crystallogr D66:125–132

    Google Scholar 

  23. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr D62:72–82

    CAS  Google Scholar 

  24. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D66:486–501

    Google Scholar 

  26. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D66:213–221

    Google Scholar 

  27. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian CL, Sonnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324:1726–1729

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bogdanov M, Dowham W (2002) Biochemistry of lipids, lipoproteins and membranes. Vance DE, Vance JE (eds) Elsevier, Amsterdam, pp 1–35

  29. Berrier C, Guilvout I, Bayan N, Park KH, Mesneau A, Chami M, Pugsley AP, Ghazi A (2011) Coupled cell-free synthesis and lipid vesicle insertion of a functional oligomeric channel MscL MscL does not need the insertase YidC for insertion in vitro. Biochim Biophys Acta 1808:41–46

    Article  CAS  PubMed  Google Scholar 

  30. Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microbiol 48:755–757

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Neidhardt FC (1996) Escherichia coli and Salmonella: cellular and molecular biology. Neidhardt FC (ed) ASM Press, Washington, pp 1–62

  32. Pornillos O, Chen YJ, Chen AP, Chang G (2005) X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310:1950–1953

    Article  CAS  PubMed  Google Scholar 

  33. Li D, Shah ST, Caffrey M (2013) Host lipid and temperature as important screening variables for crystallizing integral membrane proteins in lipidic mesophases. Trials with diacylglycerol kinase. Cryst Growth Des 13:2846–2857

  34. Blesneac I, Ravaud S, Juillan-Binard C, Barret LA, Zoonens M, Polidori A, Miroux B, Pucci B, Pebay-Peyroula E (2012) Production of UCP1 a membrane protein from the inner mitochondrial membrane using the cell free expression system in the presence of a fluorinated surfactant. Biochim Biophys Acta 1818:798–805

    Article  CAS  PubMed  Google Scholar 

  35. Roos C, Kai L, Proverbio D, Ghoshdastider U, Filipek S, Dötsch V, Bernhard F (2013) Co-translational association of cell-free expressed membrane proteins with supplied lipid bilayers. Mol Membr Biol 30:75–89

    Article  PubMed  Google Scholar 

  36. Roos C, Zocher M, Muller D, Munch D, Schneider T, Sahl HG, Scholz F, Wachtveitl J, Ma Y, Proverbio D, Henrich E, Dötsch V, Bernhard F (2012) Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim Biophys Acta 1818:3098–3106

    Article  CAS  PubMed  Google Scholar 

  37. Walden H (2010) Selenium incorporation using recombinant techniques. Acta Crystallogr D66:352–357

    Google Scholar 

  38. Ogara M, Adams GM, Gong WM, Kobayashi R, Blumenthal RM, Cheng XD (1997) Expression, purification, mass spectrometry, crystallization and multiwavelength anomalous diffraction of selenomethionyl PvuII DNA methyltransferase (cytosine-N4-specific). Eur J Biochem 247:1009–1018

    Article  CAS  Google Scholar 

  39. Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat Methods 2:261–267

    Article  CAS  PubMed  Google Scholar 

  40. Gubbens J, Kim SJ, Yang ZY, Johnson AE, Skach WR (2010) In vitro incorporation of nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs. RNA 16:1660–1672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nature Prot 6:779–790

    Article  CAS  Google Scholar 

  42. Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62

  43. Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA 105:15370–15375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Deniaud A, Liguori L, Blesneac I, Lenormand JL, Pebay-Peyroula E (2010) Crystallization of the membrane protein hVDAC1 produced in cell-free system. Biochim Biophys Acta 1798:1540–1546

    Article  CAS  PubMed  Google Scholar 

  46. Rajesh S, Knowles T, Overduin M (2011) Production of membrane proteins without cells or detergents. New Biotechnol 28:250–254

    Article  CAS  Google Scholar 

  47. Uhlemann EME, Pierson HE, Fillingame RH, Dmitriev OY (2012) Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit a fold similar to the protein in the cell membrane. Prot Sci 21:279–288

    Article  CAS  Google Scholar 

  48. Botting CH, Randall RE (1995) Reporter enzyme-nitrilotriacetic acid-nickel conjugates: reagents for detecting histidine-tagged proteins. Biotechniques 19:362–363

    CAS  PubMed  Google Scholar 

  49. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–D376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank J. Lyons, and L. Vogeley for help with diffraction data collection and analysis. This work was supported by grants from Science Foundation Ireland (07/IN.1/B1836, 12/IA/1255), FP7 COST Action CM0902 and the National Institutes of Health (P50GM073210, U54GM094599,). SH and FB were supported by the Collaborative Research Center (SFB) 807 of the German Research Foundation (DFG) and by the European Instruct consortium. X-ray diffraction data were collected on the 23-ID-B beamline of the General Medicine and Cancer Institute’s Collaborative Access Team (GM/CA-CAT) at the Advanced Photon Source (APS), Argonne, Illinois, USA, the I24 beamline at the Diamond Light Source (DLS), Didcot, Oxford, UK, and PX II at the Swiss Light Source, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Caffrey.

Additional information

C. Boland and D. Li contributed equally to the work.

Atomic coordinates and structure factors for cell-free-expressed Δ7 DgkA are deposited in the Protein Data Bank under accession code 4D2E.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, C., Li, D., Shah, S.T.A. et al. Cell-free expression and in meso crystallisation of an integral membrane kinase for structure determination. Cell. Mol. Life Sci. 71, 4895–4910 (2014). https://doi.org/10.1007/s00018-014-1655-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1655-7

Keywords

Navigation