Skip to main content

Advertisement

Log in

Apolipoprotein CIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Apolipoprotein CIII (ApoCIII) not only serves as an inhibitor of triglyceride hydrolysis but also participates in diabetes-related pathological events such as hyperactivation of voltage-gated Ca2+ (CaV) channels in the pancreatic β cell. However, nothing is known about the molecular mechanisms whereby ApoCIII hyperactivates β cell CaV channels. We now demonstrate that ApoCIII increased CaV1 channel open probability and density. ApoCIII enhanced whole-cell Ca2+ currents and the CaV1 channel blocker nimodipine completely abrogated this enhancement. The effect of ApoCIII was not influenced by individual inhibition of PKA, PKC, or Src. However, combined inhibition of PKA, PKC, and Src counteracted the effect of ApoCIII, similar results obtained by coinhibition of PKA and Src. Moreover, knockdown of β1 integrin or scavenger receptor class B type I (SR-BI) prevented ApoCIII from hyperactivating β cell CaV channels. These data reveal that ApoCIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ApoCIII:

Apolipoprotein CIII

CaV :

Voltage-gated Ca2+

SR-BI:

Scavenger receptor class B type I

References

  1. Yang SN, Berggren PO (2005) β-cell CaV channel regulation in physiology and pathophysiology. Am J Physiol 288:E16–E28

    CAS  Google Scholar 

  2. Yang SN, Berggren PO (2006) The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr Rev 27:621–676

    Article  CAS  PubMed  Google Scholar 

  3. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  4. Juntti-Berggren L, Larsson O, Rorsman P, Ammala C, Bokvist K, Wahlander K, Nicotera P, Dypbukt J, Orrenius S, Hallberg A, Berggren PO (1993) Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science 261:86–90

    Article  CAS  PubMed  Google Scholar 

  5. Juntti-Berggren L, Refai E, Appelskog I, Andersson M, Imreh G, Dekki N, Uhles S, Yu L, Griffiths WJ, Zaitsev S, Leibiger I, Yang SN, Olivecrona G, Jornvall H, Berggren PO (2004) Apolipoprotein CIII promotes Ca2+-dependent β cell death in type 1 diabetes. Proc Natl Acad Sci USA 101:10090–10094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sol EM, Sundsten T, Bergsten P (2009) Role of MAPK in apolipoprotein CIII-induced apoptosis in INS-1E cells. Lipids Heal Dis 8:3

    Article  Google Scholar 

  7. Holmberg R, Refai E, Höög A, Crooke RM, Graham M, Olivecrona G, Berggren PO, Juntti-Berggren L (2011) Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci USA 108:10685–10689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283:17416–17427

    Article  CAS  PubMed  Google Scholar 

  9. Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19:472–484

    Article  CAS  PubMed  Google Scholar 

  10. Xu S, Laccotripe M, Huang X, Rigotti A, Zannis VI, Krieger M (1997) Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 38:1289–1298

    CAS  PubMed  Google Scholar 

  11. Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC (1995) Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol 15:963–971

    Article  CAS  PubMed  Google Scholar 

  12. Huard K, Bourgeois P, Rhainds D, Falstrault L, Cohn JS, Brissette L (2005) Apolipoproteins C-II and C-III inhibit selective uptake of low- and high-density lipoprotein cholesteryl esters in HepG2 cells. Int J Biochem Cell Biol 37:1308–1318

    Article  CAS  PubMed  Google Scholar 

  13. Chan DC, Watts GF, Redgrave TG, Mori TA, Barrett PH (2002) Apolipoprotein B-100 kinetics in visceral obesity: associations with plasma apolipoprotein C-III concentration. Metabolism 51:1041–1046

    Article  CAS  PubMed  Google Scholar 

  14. Sundsten T, Ostenson CG, Bergsten P (2008) Serum protein patterns in newly diagnosed type 2 diabetes mellitus––influence of diabetic environment and family history of diabetes. Diabet Metab Res Rev 24:148–154

    Article  CAS  Google Scholar 

  15. Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 4:e113

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM (2006) Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 113:691–700

    Article  CAS  PubMed  Google Scholar 

  17. Fang DZ, Liu BW (2000) Apolipoprotein C-III can specifically bind to hepatic plasma membranes. Mol Cell Biochem 207:57–64

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami A, Aikawa M, Nitta N, Yoshida M, Libby P, Sacks FM (2007) Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase Cα-mediated nuclear factor-κB activation. Arterioscler Thromb Vasc Biol 27:219–225

    Article  CAS  PubMed  Google Scholar 

  19. Yang SN, Wenna ND, Yu J, Yang G, Qiu H, Yu L, Juntti-Berggren L, Kohler M, Berggren PO (2007) Glucose recruits KATP channels via non-insulin-containing dense-core granules. Cell Metab 6:217–228

    Article  CAS  PubMed  Google Scholar 

  20. Berggren PO, Yang SN, Murakami M, Efanov AM, Uhles S, Kohler M, Moede T, Fernstrom A, Appelskog IB, Aspinwall CA, Zaitsev SV, Larsson O, Moitoso de Vargas L, Fecher-Trost C, Weissgerber P, Ludwig A, Leibiger B, Juntti-Berggren L, Barker CJ, Gromada J, Freichel M, Leibiger IB, Flockerzi V (2004) Removal of Ca2+ channel β3 subunit enhances Ca2+ oscillation frequency and insulin exocytosis. Cell 119:273–284

    Article  CAS  PubMed  Google Scholar 

  21. Rorsman P, Arkhammar P, Berggren PO (1986) Voltage-activated Na+ currents and their suppression by phorbol ester in clonal insulin-producing RINm5F cells. Am J Physiol 251:C912–C919

    CAS  PubMed  Google Scholar 

  22. Rueckschloss U, Isenberg G (2004) Contraction augments L-type Ca2+ currents in adherent guinea-pig cardiomyocytes. J Physiol 560:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Waitkus-Edwards KR, Martinez-Lemus LA, Wu X, Trzeciakowski JP, Davis MJ, Davis GE, Meininger GA (2002) α4β1 Integrin activation of L-type calcium channels in vascular smooth muscle causes arteriole vasoconstriction. Circ Res 90:473–480

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Davis GE, Meininger GA, Wilson E, Davis MJ (2001) Regulation of the L-type calcium channel by α5β1 integrin requires signaling between focal adhesion proteins. J Biol Chem 276:30285–30292

    Article  CAS  PubMed  Google Scholar 

  25. Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ (2006) Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by c-Src and protein kinase A pathways. J Biol Chem 281:14015–14025

    Article  CAS  PubMed  Google Scholar 

  26. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674

    CAS  PubMed  Google Scholar 

  27. Ristic H, Srinivasan S, Hall KE, Sima AA, Wiley JW (1998) Serum from diabetic BB/W rats enhances calcium currents in primary sensory neurons. J Neurophysiol 80:1236–1244

    CAS  PubMed  Google Scholar 

  28. Kavalali ET, Hwang KS, Plummer MR (1997) cAMP-dependent enhancement of dihydropyridine-sensitive calcium channel availability in hippocampal neurons. J Neurosci 17:5334–5348

    CAS  PubMed  Google Scholar 

  29. Yang J, Tsien RW (1993) Enhancement of N- and L-type calcium channel currents by protein kinase C in frog sympathetic neurons. Neuron 10:127–136

    Article  CAS  PubMed  Google Scholar 

  30. Mukai E, Fujimoto S, Sato H, Oneyama C, Kominato R, Sato Y, Sasaki M, Nishi Y, Okada M, Inagaki N (2011) Exendin-4 suppresses Src activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes 60:218–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kantengwa S, Baetens D, Sadoul K, Buck CA, Halban PA, Rouiller DG (1997) Identification and characterization of α3β1 integrin on primary and transformed rat islet cells. Exp Cell Res 237:394–402

    Article  CAS  PubMed  Google Scholar 

  32. Bosco D, Meda P, Halban PA, Rouiller DG (2000) Importance of cell-matrix interactions in rat islet β-cell secretion in vitro: role of α6β1 integrin. Diabetes 49:233–243

    Article  CAS  PubMed  Google Scholar 

  33. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fassler R, Gu G, Gerber HP, Ferrara N, Melton DA, Lammert E (2006) The vascular basement membrane: a niche for insulin gene expression and β cell proliferation. Dev Cell 10:397–405

    Article  CAS  PubMed  Google Scholar 

  34. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54:87–143

    Article  CAS  PubMed  Google Scholar 

  36. Refai E, Dekki N, Yang SN, Imreh G, Cabrera O, Yu L, Yang G, Norgren S, Rossner SM, Inverardi L, Ricordi C, Olivecrona G, Andersson M, Jornvall H, Berggren PO, Juntti-Berggren L (2005) Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc Natl Acad Sci USA 102:17020–17025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, Puigserver P, Levens AR, Yang R, Zhang CY, Lowell BB, Berggren PO, Newgard CB, Bonner-Weir S, Weir G, Spiegelman BM (2003) Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell 5:73–83

    Article  CAS  PubMed  Google Scholar 

  38. Byerly L, Chase PB, Stimers JR (1985) Permeation and interaction of divalent cations in calcium channels of snail neurons. J Gen Physiol 85:491–518

    Article  CAS  PubMed  Google Scholar 

  39. Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359

    Article  CAS  PubMed  Google Scholar 

  40. Ganitkevich V, Shuba MF, Smirnov SV (1988) Saturation of calcium channels in single isolated smooth muscle cells of guinea-pig taenia caeci. J Physiol 399:419–436

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Berth von Kantzow’s Foundation, Diabetes Research and Wellness Foundation, EuroDia (FP6-518153), the Family Erling-Persson Foundation, Fredrik and Ingrid Thuring’s Foundation, Funds of Karolinska Institutet, the Knut and Alice Wallenberg Foundation, Magn. Bergvall’s Foundation, Novo Nordisk Foundation, Skandia Insurance Company, Ltd., the Stichting af Jochnick Foundation, Strategic Research Program in Diabetes at Karolinska Institutet, the Swedish Alzheimer Association, the Swedish Diabetes Association, the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Society of Medicine, Torsten and Ragnar Söderberg Foundation, VIBRANT (FP7-228933-2) and Åke Wiberg’s Foundation. P.-O. Berggren is founder of the Biotech Company BioCrine AB and is also a member of the board of this company. S.-N.Yang is a consultant to BioCrine AB. BioCrine AB is developing ApoCIII as a novel druggable target for the treatment of diabetes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Per-Olof Berggren or Shao-Nian Yang.

Additional information

Yue Shi and Guang Yang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Yang, G., Yu, J. et al. Apolipoprotein CIII hyperactivates β cell CaV1 channels through SR-BI/β1 integrin-dependent coactivation of PKA and Src. Cell. Mol. Life Sci. 71, 1289–1303 (2014). https://doi.org/10.1007/s00018-013-1442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1442-x

Keywords

Navigation