Skip to main content

Advertisement

Log in

Decoding the non-coding RNAs in Alzheimer’s disease

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer’s disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513(5):532–541. doi:10.1002/cne.21974

    PubMed  Google Scholar 

  2. Ooi L, Wood IC (2008) Regulation of gene expression in the nervous system. Biochem J 414(3):327–341. doi:10.1042/BJ20080963

    PubMed  CAS  Google Scholar 

  3. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585(11):1600–1616. doi:10.1016/j.febslet.2011.05.001

    PubMed  CAS  Google Scholar 

  4. Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319(5871):1787–1789. doi:10.1126/science.1155472

    PubMed  CAS  Google Scholar 

  5. St Laurent G 3rd, Wahlestedt C (2007) Non-coding RNAs: couplers of analog and digital information in nervous system function? Trends Neurosci 30(12):612–621. doi:10.1016/j.tins.2007.10.002

    PubMed  CAS  Google Scholar 

  6. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. doi:10.1016/S0140-6736(10)61349-9

    PubMed  Google Scholar 

  7. Liscic RM, Grinberg LT, Zidar J, Gitcho MA, Cairns NJ (2008) ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol 15(8):772–780. doi:10.1111/j.1468-1331.2008.02195.x

    PubMed  CAS  Google Scholar 

  8. Gotz J (2001) Tau and transgenic animal models. Brain Res Brain Res Rev 35(3):266–286

    PubMed  CAS  Google Scholar 

  9. Schonrock N, Matamales M, Ittner LM, Gotz J (2012) MicroRNA networks surrounding APP and amyloid-beta metabolism—Implications for Alzheimer’s disease. Exp Neurol 235(2):447–454. doi:10.1016/j.expneurol.2011.11.013

    PubMed  CAS  Google Scholar 

  10. Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1(4):255–269

    PubMed  CAS  Google Scholar 

  11. Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis 2011:352805. doi:10.4061/2011/352805

    PubMed  Google Scholar 

  12. Chen F, David D, Ferrari A, Gotz J (2004) Posttranslational modifications of tau—role in human tauopathies and modeling in transgenic animals. Curr Drug Targets 5(6):503–515

    PubMed  CAS  Google Scholar 

  13. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397. doi:10.1016/j.cell.2010.06.036

    PubMed  CAS  Google Scholar 

  14. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787

    PubMed  CAS  Google Scholar 

  15. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778. doi:10.1038/nrn2494

    PubMed  CAS  Google Scholar 

  16. David DC, Ittner LM, Gehrig P, Nergenau D, Shepherd C, Halliday G, Gotz J (2006) Beta-amyloid treatment of two complementary P301L tau-expressing Alzheimer’s disease models reveals similar deregulated cellular processes. Proteomics 6(24):6566–6577. doi:10.1002/pmic.200600634

    PubMed  CAS  Google Scholar 

  17. Gotz J, Ittner LM (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 9(7):532–544. doi:10.1038/nrn2420

    PubMed  Google Scholar 

  18. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149. doi:10.1038/nrg2904

    PubMed  CAS  Google Scholar 

  19. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF (2009) RNA regulation of epigenetic processes. Bioessays 31(1):51–59. doi:10.1002/bies.080099

    PubMed  CAS  Google Scholar 

  20. Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138(9):1653–1661. doi:10.1242/dev.056234

    PubMed  CAS  Google Scholar 

  21. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    PubMed  CAS  Google Scholar 

  22. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385

    PubMed  CAS  Google Scholar 

  23. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966. doi:10.1261/rna.7135204

    PubMed  CAS  Google Scholar 

  24. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi:10.1146/annurev-biochem-060308-103103

    PubMed  CAS  Google Scholar 

  25. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14. doi:10.1016/j.cell.2007.12.024

    PubMed  CAS  Google Scholar 

  26. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934. doi:10.1126/science.1149460

    PubMed  CAS  Google Scholar 

  27. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105(5):1608–1613. doi:10.1073/pnas.0707594105

    PubMed  CAS  Google Scholar 

  28. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    PubMed  CAS  Google Scholar 

  29. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:146–151. doi:10.1093/nar/gkq1138

    Google Scholar 

  30. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23(13):1494–1504. doi:10.1101/gad.1800909

    PubMed  CAS  Google Scholar 

  31. Magistri M, Faghihi MA, St Laurent G 3rd, Wahlestedt C (2012) Regulation of chromatin structure by long non-coding RNAs: focus on natural antisense transcripts. Trends Genet. doi:10.1016/j.tig.2012.03.013

    PubMed  Google Scholar 

  32. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Non-coding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103. doi:10.1146/annurev.neuro.29.051605.112839

    PubMed  CAS  Google Scholar 

  33. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long non-coding RNAs in the mouse brain. Proc Natl Acad Sci USA 105(2):716–721. doi:10.1073/pnas.0706729105

    PubMed  CAS  Google Scholar 

  34. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414. doi:10.1016/j.cell.2007.04.040

    PubMed  CAS  Google Scholar 

  35. Kosik KS, Krichevsky AM (2005) The elegance of the microRNAs: a neuronal perspective. Neuron 47(6):779–782. doi:10.1016/j.neuron.2005.08.019

    PubMed  CAS  Google Scholar 

  36. Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575(Pt 2):333–341. doi:10.1113/jphysiol.2006.113191

    PubMed  CAS  Google Scholar 

  37. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008

    PubMed  CAS  Google Scholar 

  38. Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29(3):438–445. doi:10.1016/j.nbd.2007.11.001

    PubMed  CAS  Google Scholar 

  39. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317(5842):1220–1224. doi:10.1126/science.1140481

    PubMed  CAS  Google Scholar 

  40. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27. doi:10.1186/gb-2007-8-2-r27

    PubMed  Google Scholar 

  41. Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TD, Terry AV Jr, Gardiner K, Head E, Feldman DS, Elton TS (2008) Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 370(3):473–477. doi:10.1016/j.bbrc.2008.03.120

    PubMed  CAS  Google Scholar 

  42. Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z, Kobor MS, Sun YE, Bredy TW (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14(9):1115–1117. doi:10.1038/nn.2891

    PubMed  CAS  Google Scholar 

  43. Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci USA 107(30):13318–13323. doi:10.1073/pnas.1008227107

    PubMed  CAS  Google Scholar 

  44. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384. doi:10.1016/j.neuron.2010.01.005

    PubMed  CAS  Google Scholar 

  45. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R, Wan X, Pavlidis P, Mills AA, Karayiorgou M, Gogos JA (2008) Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 40(6):751–760. doi:10.1038/ng.138

    PubMed  CAS  Google Scholar 

  46. Tal TL, Tanguay RL (2012) Non-coding RNAs-Novel targets in neurotoxicity. Neurotoxicology. doi:10.1016/j.neuro.2012.02.013

    PubMed  Google Scholar 

  47. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:10.1038/nature07672

    PubMed  CAS  Google Scholar 

  48. Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, Mehler MF (2010) Long non-coding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 11:14. doi:10.1186/1471-2202-11-14

    PubMed  Google Scholar 

  49. Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151(6):2443–2452. doi:10.1210/en.2009-1151

    PubMed  CAS  Google Scholar 

  50. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12(8):1020–1027. doi:10.1038/nn.2371

    PubMed  CAS  Google Scholar 

  51. Lewejohann L, Skryabin BV, Sachser N, Prehn C, Heiduschka P, Thanos S, Jordan U, Dell’Omo G, Vyssotski AL, Pleskacheva MG, Lipp HP, Tiedge H, Brosius J, Prior H (2004) Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behav Brain Res 154(1):273–289. doi:10.1016/j.bbr.2004.02.015

    PubMed  CAS  Google Scholar 

  52. Salta E, De Strooper B (2012) Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 11(2):189–200. doi:10.1016/S1474-4422(11)70286-1

    PubMed  CAS  Google Scholar 

  53. Hoerndli F, David DC, Gotz J (2005) Functional genomics meets neurodegenerative disorders. Part II: application and data integration. Prog Neurobiol 76(3):169–188. doi:10.1016/j.pneurobio.2005.07.002

    PubMed  CAS  Google Scholar 

  54. Benetti F, Gustincich S, Legname G (2012) Gene expression profiling and therapeutic interventions in neurodegenerative diseases: a comprehensive study on potentiality and limits. Expert Opin Drug Discov 7(3):245–259. doi:10.1517/17460441.2012.659661

    PubMed  CAS  Google Scholar 

  55. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LS (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. doi:10.1038/nature10821

    PubMed  CAS  Google Scholar 

  56. Courtney E, Kornfeld S, Janitz K, Janitz M (2010) Transcriptome profiling in neurodegenerative disease. J Neurosci Methods 193(2):189–202. doi:10.1016/j.jneumeth.2010.08.018

    PubMed  CAS  Google Scholar 

  57. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18(3):297–300. doi:10.1097/WNR.0b013e3280148e8b

    PubMed  CAS  Google Scholar 

  58. Lukiw WJ, Zhao Y, Cui JG (2008) An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283(46):31315–31322. doi:10.1074/jbc.M805371200

    PubMed  CAS  Google Scholar 

  59. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008

    PubMed  Google Scholar 

  60. Hebert SS, Horre K, Nicolai L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B (2008) Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA 105(17):6415–6420. doi:10.1073/pnas.0710263105

    PubMed  CAS  Google Scholar 

  61. Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41

    PubMed  CAS  Google Scholar 

  62. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) microRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 1:263–274

    PubMed  Google Scholar 

  63. Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) microRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33(3):422–428. doi:10.1016/j.nbd.2008.11.009

    PubMed  CAS  Google Scholar 

  64. Sethi P, Lukiw WJ (2009) micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459(2):100–104. doi:10.1016/j.neulet.2009.04.052

    PubMed  CAS  Google Scholar 

  65. Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE 5(2):e8898. doi:10.1371/journal.pone.0008898

    PubMed  Google Scholar 

  66. Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J (2010) Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 36(4):320–330. doi:10.1111/j.1365-2990.2010.01076.x

    PubMed  CAS  Google Scholar 

  67. Hebert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206. doi:10.1016/j.tins.2008.12.003

    PubMed  CAS  Google Scholar 

  68. Delay C, Hebert SS (2011) microRNAs and Alzheimer’s disease mouse models: current insights and future research avenues. Int J Alzheimers Dis 2011:894938. doi:10.4061/2011/894938

    PubMed  Google Scholar 

  69. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273. doi:10.1016/j.brainresbull.2009.08.006

    PubMed  CAS  Google Scholar 

  70. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949. doi:10.1073/pnas.0506654102

    PubMed  CAS  Google Scholar 

  71. Gotz J, Eckert A, Matamales M, Ittner LM, Liu X (2011) Modes of Abeta toxicity in Alzheimer’s disease. Cell Mol Life Sci 68(20):3359–3375. doi:10.1007/s00018-011-0750-2

    PubMed  Google Scholar 

  72. Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM, Preiss T, Gotz J (2010) Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-beta. PLoS ONE 5(6):e11070. doi:10.1371/journal.pone.0011070

    PubMed  Google Scholar 

  73. Delay C, Mandemakers W, Hebert SS (2012) microRNAs in Alzheimer’s disease. Neurobiol Dis 46(2):285–290. doi:10.1016/j.nbd.2012.01.003

    PubMed  CAS  Google Scholar 

  74. Donev R, Newall A, Thome J, Sheer D (2007) A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 12(7):681–690. doi:10.1038/sj.mp.4001971

    PubMed  CAS  Google Scholar 

  75. Smith P, Al Hashimi A, Girard J, Delay C, Hebert SS (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116(2):240–247. doi:10.1111/j.1471-4159.2010.07097.x

    PubMed  CAS  Google Scholar 

  76. Papagiannakopoulos T, Kosik KS (2009) microRNA-124: micromanager of neurogenesis. Cell Stem Cell 4(5):375–376. doi:10.1016/j.stem.2009.04.007

    PubMed  CAS  Google Scholar 

  77. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. doi:10.1016/j.molcel.2007.07.015

    PubMed  CAS  Google Scholar 

  78. Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E, De Pooter T, van Duijn CM, De Deyn PP, Van Broeckhoven C (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78(6):936–946. doi:10.1086/504044

    PubMed  CAS  Google Scholar 

  79. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38(1):24–26. doi:10.1038/ng1718

    PubMed  CAS  Google Scholar 

  80. Podlisny MB, Lee G, Selkoe DJ (1987) Gene dosage of the amyloid beta precursor protein in Alzheimer’s disease. Science 238(4827):669–671

    PubMed  CAS  Google Scholar 

  81. de Sauvage F, Kruys V, Marinx O, Huez G, Octave JN (1992) Alternative polyadenylation of the amyloid protein precursor mRNA regulates translation. EMBO J 11(8):3099–3103

    PubMed  Google Scholar 

  82. Niwa R, Zhou F, Li C, Slack FJ (2008) The expression of the Alzheimer’s amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol 315(2):418–425. doi:10.1016/j.ydbio.2007.12.044

    PubMed  CAS  Google Scholar 

  83. Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, Liu M, Li X, Tang H (2010) miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai) 42(5):318–324

    CAS  Google Scholar 

  84. Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ (2008) MicroRNAs can regulate human APP levels. Mol Neurodegener 3:10. doi:10.1186/1750-1326-3-10

    PubMed  Google Scholar 

  85. Long JM, Lahiri DK (2011) microRNA-101 downregulates Alzheimer’s amyloid-beta precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 404(4):889–895. doi:10.1016/j.bbrc.2010.12.053

    PubMed  CAS  Google Scholar 

  86. Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F (2010) microRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 285(24):18344–18351. doi:10.1074/jbc.M110.112664

    PubMed  CAS  Google Scholar 

  87. Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X (2012) microRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging 33(3):522–534. doi:10.1016/j.neurobiolaging.2010.04.034

    PubMed  CAS  Google Scholar 

  88. Delay C, Calon F, Mathews P, Hebert SS (2011) Alzheimer-specific variants in the 3′UTR of amyloid precursor protein affect microRNA function. Mol Neurodegener 6:70. doi:10.1186/1750-1326-6-70

    PubMed  CAS  Google Scholar 

  89. Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, Liu Y, Qin C (2012) microRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res 1455:103–113. doi:10.1016/j.brainres.2011.10.051

    PubMed  CAS  Google Scholar 

  90. Broytman O, Westmark PR, Gurel Z, Malter JS (2009) Rck/p54 interacts with APP mRNA as part of a multi-protein complex and enhances APP mRNA and protein expression in neuronal cell lines. Neurobiol Aging 30(12):1962–1974. doi:10.1016/j.neurobiolaging.2008.02.011

    PubMed  CAS  Google Scholar 

  91. Rajagopalan LE, Malter JS (2000) Growth factor-mediated stabilization of amyloid precursor protein mRNA is mediated by a conserved 29-nucleotide sequence in the 3′-untranslated region. J Neurochem 74(1):52–59

    PubMed  CAS  Google Scholar 

  92. Zaidi SH, Malter JS (1995) Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3′-untranslated region of amyloid protein precursor mRNA. J Biol Chem 270(29):17292–17298

    PubMed  CAS  Google Scholar 

  93. Amara FM, Junaid A, Clough RR, Liang B (1999) TGF-beta(1), regulation of Alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res Mol Brain Res 71(1):42–49

    PubMed  CAS  Google Scholar 

  94. Glinsky GV (2008) An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle 7(16):2570–2583

    PubMed  CAS  Google Scholar 

  95. Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25(50):11693–11709. doi:10.1523/JNEUROSCI.2766-05.2005

    PubMed  CAS  Google Scholar 

  96. Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, Li R, Shen Y (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9(1):3–4. doi:10.1038/nm0103-3

    PubMed  CAS  Google Scholar 

  97. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14(7):723–730. doi:10.1038/nm1784

    PubMed  CAS  Google Scholar 

  98. Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11(5):R56. doi:10.1186/gb-2010-11-5-r56

    PubMed  Google Scholar 

  99. Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C, Qin C (2011) miR-29c regulates BACE1 protein expression. Brain Res 1395:108–115. doi:10.1016/j.brainres.2011.04.035

    PubMed  CAS  Google Scholar 

  100. Boissonneault V, Plante I, Rivest S, Provost P (2009) microRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284(4):1971–1981. doi:10.1074/jbc.M807530200

    PubMed  CAS  Google Scholar 

  101. Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, Florio T, Dieci G, Cancedda R, Pagano A (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41(2):308–317. doi:10.1016/j.nbd.2010.09.019

    PubMed  CAS  Google Scholar 

  102. Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278(22):19777–19783. doi:10.1074/jbc.M300466200

    PubMed  CAS  Google Scholar 

  103. Geekiyanage H, Chan C (2011) microRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci 31(41):14820–14830. doi:10.1523/JNEUROSCI.3883-11.2011

    PubMed  CAS  Google Scholar 

  104. Liu KP, Kuo MC, Tang KC, Chau AW, Ho IH, Kwok MP, Chan WC, Choi RH, Lam NC, Chu MM, Chu LW (2011) Effects of age, education and gender in the Consortium to Establish a Registry for the Alzheimer’s Disease (CERAD)-Neuropsychological Assessment Battery for Cantonese-speaking Chinese elders. Int Psychogeriatr 23(10):1575–1581. doi:10.1017/S1041610211001153

    PubMed  Google Scholar 

  105. Hirsch-Reinshagen V, Burgess BL, Wellington CL (2009) Why lipids are important for Alzheimer disease? Mol Cell Biochem 326(1–2):121–129. doi:10.1007/s11010-008-0012-2

    PubMed  CAS  Google Scholar 

  106. Kim J, Yoon H, Ramirez CM, Lee SM, Hoe HS, Fernandez-Hernando C (2012) miR-106b impairs cholesterol efflux and increases Abeta levels by repressing ABCA1 expression. Exp Neurol 235(2):476–483. doi:10.1016/j.expneurol.2011.11.010

    PubMed  CAS  Google Scholar 

  107. Akram A, Schmeidler J, Katsel P, Hof PR, Haroutunian V (2010) Increased expression of cholesterol transporter ABCA1 is highly correlated with severity of dementia in AD hippocampus. Brain Res 1318:167–177. doi:10.1016/j.brainres.2010.01.006

    PubMed  CAS  Google Scholar 

  108. Litman P, Barg J, Rindzoonski L, Ginzburg I (1993) Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron 10(4):627–638

    PubMed  CAS  Google Scholar 

  109. Behar L, Marx R, Sadot E, Barg J, Ginzburg I (1995) cis-acting signals and trans-acting proteins are involved in tau mRNA targeting into neurites of differentiating neuronal cells. Int J Dev Neurosci 13(2):113–127

    PubMed  CAS  Google Scholar 

  110. Larcher JC, Gasmi L, Viranaicken W, Edde B, Bernard R, Ginzburg I, Denoulet P (2004) Ilf3 and NF90 associate with the axonal targeting element of Tau mRNA. Faseb J 18(14):1761–1763. doi:10.1096/fj.04-1763fje

    PubMed  CAS  Google Scholar 

  111. Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buee L, De Strooper B (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19(20):3959–3969. doi:10.1093/hmg/ddq311

    PubMed  CAS  Google Scholar 

  112. Smith PY, Delay C, Girard J, Papon MA, Planel E, Sergeant N, Buee L, Hebert SS (2011) microRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20(20):4016–4024. doi:10.1093/hmg/ddr330

    PubMed  CAS  Google Scholar 

  113. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28(17):4322–4330. doi:10.1523/JNEUROSCI.4815-07.2008

    PubMed  CAS  Google Scholar 

  114. Kawase-Koga Y, Low R, Otaegi G, Pollock A, Deng H, Eisenhaber F, Maurer-Stroh S, Sun T (2010) RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 123(Pt 4):586–594. doi:10.1242/jcs.059659

    PubMed  CAS  Google Scholar 

  115. Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM (2006) microRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell 24(1):157–163. doi:10.1016/j.molcel.2006.07.030

    PubMed  CAS  Google Scholar 

  116. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526

    PubMed  CAS  Google Scholar 

  117. D’Souza I, Schellenberg GD (2005) Regulation of tau isoform expression and dementia. Biochim Biophys Acta 1739(2–3):104–115. doi:10.1016/j.bbadis.2004.08.009

    PubMed  Google Scholar 

  118. Caffrey TM, Joachim C, Paracchini S, Esiri MM, Wade-Martins R (2006) Haplotype-specific expression of exon 10 at the human MAPT locus. Hum Mol Genet 15(24):3529–3537. doi:10.1093/hmg/ddl429

    PubMed  CAS  Google Scholar 

  119. Liu F, Gong CX (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3:8. doi:10.1186/1750-1326-3-8

    PubMed  Google Scholar 

  120. Ke Y, Dramiga J, Schutz U, Kril JJ, Ittner LM, Schroder H, Gotz J (2012) Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer’s and Pick’s Disease. PLoS ONE 7(4):e35678. doi:10.1371/journal.pone.0035678

    PubMed  CAS  Google Scholar 

  121. Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A (2004) Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem 88(5):1078–1090

    PubMed  CAS  Google Scholar 

  122. Tollervey JR, Wang Z, Hortobagyi T, Witten JT, Zarnack K, Kayikci M, Clark TA, Schweitzer AC, Rot G, Curk T, Zupan B, Rogelj B, Shaw CE, Ule J (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21(10):1572–1582. doi:10.1101/gr.122226.111

    PubMed  CAS  Google Scholar 

  123. Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR (2011) Loss of exon identity is a common mechanism of human inherited disease. Genome Res 21(10):1563–1571. doi:10.1101/gr.118638.110

    PubMed  CAS  Google Scholar 

  124. Cai Z, Zhao Y, Zhao B (2012) Roles of Glycogen synthase kinase 3 in Alzheimer’s disease. Curr Alzheimer Res [Epub ahead of print]

  125. Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3beta. J Biol Chem 285(38):29336–29347. doi:10.1074/jbc.M110.101147

    PubMed  CAS  Google Scholar 

  126. Caputo V, Sinibaldi L, Fiorentino A, Parisi C, Catalanotto C, Pasini A, Cogoni C, Pizzuti A (2011) Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS ONE 6(12):e28656. doi:10.1371/journal.pone.0028656

    PubMed  CAS  Google Scholar 

  127. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714. doi:10.1093/hmg/ddh083

    PubMed  CAS  Google Scholar 

  128. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. doi:10.1016/j.neuron.2010.08.044

    PubMed  CAS  Google Scholar 

  129. Gan L, Mucke L (2008) Paths of convergence: sirtuins in aging and neurodegeneration. Neuron 58(1):10–14. doi:10.1016/j.neuron.2008.03.015

    PubMed  CAS  Google Scholar 

  130. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, Calon F (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68(1):48–58. doi:10.1097/NEN.0b013e3181922348

    PubMed  CAS  Google Scholar 

  131. Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E (2010) miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2(7):415–431

    CAS  Google Scholar 

  132. Schonrock N, Humphreys DT, Preiss T, Gotz J (2012) Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-beta. J Mol Neurosci 46(2):324–335. doi:10.1007/s12031-011-9587-2

    PubMed  CAS  Google Scholar 

  133. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, Bahari-Javan S, Burkhardt S, Sananbenesi F, Fischer A (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30(20):4299–4308. doi:10.1038/emboj.2011.327

    PubMed  CAS  Google Scholar 

  134. Carrettiero DC, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik KS (2009) The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. J Neurosci 29(7):2151–2161. doi:10.1523/JNEUROSCI.4660-08.2009

    PubMed  CAS  Google Scholar 

  135. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT (2011) Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121(2):193–205. doi:10.1007/s00401-010-0756-0

    PubMed  Google Scholar 

  136. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791. doi:10.1126/science.1074069

    PubMed  CAS  Google Scholar 

  137. Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127(1):49–58. doi:10.1016/j.cell.2006.09.014

    PubMed  CAS  Google Scholar 

  138. Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497. doi:10.1016/j.gde.2011.04.008

    PubMed  CAS  Google Scholar 

  139. Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 104(25):10679–10684. doi:10.1073/pnas.0701532104

    PubMed  CAS  Google Scholar 

  140. Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2(9):628–636. doi:10.1038/35023579

    PubMed  CAS  Google Scholar 

  141. Whiteman IT, Gervasio OL, Cullen KM, Guillemin GJ, Jeong EV, Witting PK, Antao ST, Minamide LS, Bamburg JR, Goldsbury C (2009) Activated actin-depolymerizing factor/cofilin sequesters phosphorylated microtubule-associated protein during the assembly of Alzheimer-like neuritic cytoskeletal striations. J Neurosci 29(41):12994–13005. doi:10.1523/JNEUROSCI.3531-09.2009

    PubMed  CAS  Google Scholar 

  142. Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT (2010) microRNA-related cofilin abnormality in Alzheimer’s disease. PLoS ONE 5(12):e15546. doi:10.1371/journal.pone.0015546

    PubMed  CAS  Google Scholar 

  143. Li L (2004) Regulation of innate immunity signaling and its connection with human diseases. Curr Drug Targets Inflamm Allergy 3(1):81–86

    PubMed  CAS  Google Scholar 

  144. Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ (2010) Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 285(50):38951–38960. doi:10.1074/jbc.M110.178848

    PubMed  CAS  Google Scholar 

  145. The ENCODE Project Consortium (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9(4):e1001046. doi:10.1371/journal.pbio.1001046

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Health & Medical Research Council (NHMRC), and the Australian Research Council (ARC).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Schonrock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schonrock, N., Götz, J. Decoding the non-coding RNAs in Alzheimer’s disease. Cell. Mol. Life Sci. 69, 3543–3559 (2012). https://doi.org/10.1007/s00018-012-1125-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1125-z

Keywords

Navigation