Skip to main content

Advertisement

Log in

Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inherited cardiomyopathies are caused by point mutations in sarcomeric gene products, including α-cardiac muscle actin (ACTC1). We examined the biochemical and cell biological properties of the α-cardiac actin mutations Y166C and M305L identified in hypertrophic cardiomyopathy (HCM). Untagged wild-type (WT) cardiac actin, and the Y166C and M305L mutants were expressed by the baculovirus/Sf9-cell system and affinity purified by immobilized gelsolin G4–6. Their correct folding was verified by a number of assays. The mutant actins also displayed a disturbed intrinsic ATPase activity and an altered polymerization behavior in the presence of tropomyosin, gelsolin, and Arp2/3 complex. Both mutants stimulated the cardiac β-myosin ATPase to only 50 % of WT cardiac F-actin. Copolymers of WT and increasing amounts of the mutant actins led to a reduced stimulation of the myosin ATPase. Transfection of established cell lines revealed incorporation of EGFP- and hemagglutinin (HA)-tagged WT and both mutant actins into cytoplasmic stress fibers. Adenoviral vectors of HA-tagged WT and Y166C actin were successfully used to infect adult and neonatal rat cardiomyocytes (NRCs). The expressed HA-tagged actins were incorporated into the minus-ends of NRC thin filaments, demonstrating the ability to form hybrid thin filaments with endogenous actin. In NRCs, the Y166C mutant led after 72 h to a shortening of the sarcomere length when compared to NRCs infected with WT actin. Thus our data demonstrate that a mutant actin can be integrated into cardiomyocyte thin filaments and by its reduced mode of myosin interaction might be the basis for the initiation of HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789

    Article  PubMed  CAS  Google Scholar 

  2. Maron BJ (1997) Hypertrophic cardiomyopathy. Lancet 350:127–133. doi:10.1016/S0140-6736(97)01282-8

    Article  PubMed  CAS  Google Scholar 

  3. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567 (pii: S0092-8674(01)00242-2)

    Article  PubMed  CAS  Google Scholar 

  4. Alcalai R, Seidman JG, Seidman CE (2008) Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 19:104–110. doi:10.1111/j.1540-8167.2007.00965.x

    PubMed  Google Scholar 

  5. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232. doi:10.1161/01.CIR.0000066323.15244.54

    Article  PubMed  Google Scholar 

  6. Marian AJ, Roberts R (2001) The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 33:655–670. doi:10.1006/jmcc.2001.1340

    Article  PubMed  CAS  Google Scholar 

  7. Arad M, Seidman JG, Seidman CE (2002) Phenotypic diversity in hypertrophic cardiomyopathy. Hum Mol Genet 11:2499–2506

    Article  PubMed  CAS  Google Scholar 

  8. Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, Martiniak Y, Gehmlich K, van der Ven PF, Furst DO, Vornwald A, von Hodenberg E, Nurnberg P, Scheffold T, Dietz R, Osterziel KJ (2003) Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107:1390–1395

    Article  PubMed  CAS  Google Scholar 

  9. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J (1998) A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest 102:1292–1300. doi:10.1172/JCI3880

    Article  PubMed  CAS  Google Scholar 

  10. Brown JH, Del Re DP, Sussman MA (2006) The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 98:730–742. doi:10.1161/01.RES.0000216039.75913.9e

    Article  PubMed  CAS  Google Scholar 

  11. Hannigan GE, Coles JG, Dedhar S (2007) Integrin-linked kinase at the heart of cardiac contractility, repair, and disease. Circ Res 100:1408–1414. doi:10.1161/01.RES.0000265233.40455.62

    Article  PubMed  CAS  Google Scholar 

  12. Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40:2023–2039. doi:10.1016/j.biocel.2008.02.020

    Article  PubMed  CAS  Google Scholar 

  13. Lankford EB, Epstein ND, Fananapazir L, Sweeney HL (1995) Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest 95:1409–1414. doi:10.1172/JCI117795

    Article  PubMed  CAS  Google Scholar 

  14. Watkins H, Seidman CE, Seidman JG, Feng HS, Sweeney HL (1996) Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest 98:2456–2461. doi:10.1172/JCI119063

    Article  PubMed  CAS  Google Scholar 

  15. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752

    Article  PubMed  CAS  Google Scholar 

  16. Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD (1999) Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43. doi:10.1172/JCI6460

    Article  PubMed  CAS  Google Scholar 

  17. Vang S, Corydon TJ, Borglum AD, Scott MD, Frydman J, Mogensen J, Gregersen N, Bross P (2005) Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J 272:2037–2049. doi:10.1111/j.1742-4658.2005.04630.x

    Article  PubMed  CAS  Google Scholar 

  18. Bathe FS, Rommelaere H, Machesky LM (2007) Phenotypes of myopathy-related actin mutants in differentiated C2C12 myotubes. BMC Cell Biol 8:2. doi:10.1186/1471-2121-8-2

    Article  PubMed  Google Scholar 

  19. Metzger JM, Michele DE, Rust EM, Borton AR, Westfall MV (2003) Sarcomere thin filament regulatory isoforms. Evidence of a dominant effect of slow skeletal troponin I on cardiac contraction. J Biol Chem 278:13118–13123. doi:10.1074/jbc.M212601200

    Article  PubMed  CAS  Google Scholar 

  20. Sussman MA, Baque S, Uhm CS, Daniels MP, Price RL, Simpson D, Terracio L, Kedes L (1998) Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ Res 82:94–105

    Article  PubMed  CAS  Google Scholar 

  21. Marian AJ, Yu QT, Mann DL, Graham FL, Roberts R (1995) Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Circ Res 77:98–106

    Article  PubMed  CAS  Google Scholar 

  22. Wang Q, Moncman CL, Winkelmann DA (2003) Mutations in the motor domain modulate myosin activity and myofibril organization. J Cell Sci 116:4227–4238. doi:10.1242/jcs.00709

    Article  PubMed  CAS  Google Scholar 

  23. Frankel S, Condeelis J, Leinwand L (1990) Expression of actin in Escherichia coli. Aggregation, solubilization, and functional analysis. J Biol Chem 265:17980–17987

    PubMed  CAS  Google Scholar 

  24. Aspenstrom P, Karlsson R (1991) Interference with myosin subfragment-1 binding by site-directed mutagenesis of actin. Eur J Biochem 200:35–41

    Article  PubMed  CAS  Google Scholar 

  25. Johara M, Toyoshima YY, Ishijima A, Kojima H, Yanagida T, Sutoh K (1993) Charge-reversion mutagenesis of Dictyostelium actin to map the surface recognized by myosin during ATP-driven sliding motion. Proc Natl Acad Sci USA 90:2127–2131

    Article  PubMed  CAS  Google Scholar 

  26. Noguchi TQ, Kanzaki N, Ueno H, Hirose K, Uyeda TQ (2007) A novel system for expressing toxic actin mutants in Dictyostelium and purification and characterization of a dominant lethal yeast actin mutant. J Biol Chem 282:27721–27727. doi:10.1074/jbc.M703165200

    Article  PubMed  CAS  Google Scholar 

  27. Joel PB, Fagnant PM, Trybus KM (2004) Expression of a nonpolymerizable actin mutant in Sf9 cells. Biochemistry 43:11554–11559. doi:10.1021/bi048899a

    Article  PubMed  CAS  Google Scholar 

  28. Bookwalter CS, Trybus KM (2006) Functional consequences of a mutation in an expressed human alpha-cardiac actin at a site implicated in familial hypertrophic cardiomyopathy. J Biol Chem 281:16777–16784. doi:10.1074/jbc.M512935200

    Article  PubMed  CAS  Google Scholar 

  29. Miller BM, Trybus KM (2008) Functional effects of nemaline myopathy mutations on human skeletal alpha-actin. J Biol Chem 283:19379–19388. doi:10.1074/jbc.M801963200

    Article  PubMed  CAS  Google Scholar 

  30. Iwasa M, Maeda K, Narita A, Maeda Y, Oda T (2008) Dual roles of Gln137 of actin revealed by recombinant human cardiac muscle alpha-actin mutants. J Biol Chem 283:21045–21053. doi:10.1074/jbc.M800570200

    Article  PubMed  CAS  Google Scholar 

  31. Dunn AY, Melville MW, Frydman J (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J Struct Biol 135:176–184. doi:10.1006/jsbi.2001.4380

    Article  PubMed  CAS  Google Scholar 

  32. Kodama A, Lechler T, Fuchs E (2004) Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol 167:203–207. doi:10.1083/jcb.200408047

    Article  PubMed  CAS  Google Scholar 

  33. Sheterline P, Clayton J, Sparrow J (1995) Actin. Protein Profile 2:1–103

    PubMed  CAS  Google Scholar 

  34. Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415. doi:10.1111/j.1432-1033.2004.04044.x

    Article  PubMed  CAS  Google Scholar 

  35. Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802. doi:10.1016/0022-2836(78)90020-7

    Article  PubMed  CAS  Google Scholar 

  36. Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186. doi:10.1146/annurev-biophys-042910-155359

    Article  PubMed  CAS  Google Scholar 

  37. Schoenenberger CA, Mannherz HG, Jockusch BM (2011) Actin: from structural plasticity to functional diversity. Eur J Cell Biol 90:797–804. doi:10.1016/j.ejcb.2011.05.002

    Article  PubMed  CAS  Google Scholar 

  38. Pfaendtner J, Lyman E, Pollard TD, Voth GA (2010) Structure and dynamics of the actin filament. J Mol Biol 396:252–263. doi:10.1016/j.jmb.2009.11.034

    Article  PubMed  CAS  Google Scholar 

  39. Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegardh J, Enell H, Jonzon A, Vikkula M, Gutierrez I, Granados-Riveron J, Pope M, Bu’Lock F, Cox J, Robinson TE, Song F, Brook DJ, Marston S, Trybus KM, Dahl N (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17:256–265. doi:10.1093/hmg/ddm302

    Article  PubMed  CAS  Google Scholar 

  40. Zhu M, Yang T, Wei S, DeWan AT, Morell RJ, Elfenbein JL, Fisher RA, Leal SM, Smith RJ, Friderici KH (2003) Mutations in the gamma-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26). Am J Hum Genet 73:1082–1091. doi:10.1086/379286

    Article  PubMed  CAS  Google Scholar 

  41. van Wijk E, Krieger E, Kemperman MH, De Leenheer EM, Huygen PL, Cremers CW, Cremers FP, Kremer H (2003) A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 40:879–884

    Article  PubMed  Google Scholar 

  42. Procaccio V, Salazar G, Ono S, Styers ML, Gearing M, Davila A, Jimenez R, Juncos J, Gutekunst CA, Meroni G, Fontanella B, Sontag E, Sontag JM, Faundez V, Wainer BH (2006) A mutation of beta -actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia. Am J Hum Genet 78:947–960. doi:10.1086/504271

    Article  PubMed  CAS  Google Scholar 

  43. Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O’Toole BA, Lessard JL (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci USA 94:4406–4411

    Article  PubMed  CAS  Google Scholar 

  44. Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358:1899–1908. doi:10.1056/NEJMoa075463

    Article  PubMed  CAS  Google Scholar 

  45. Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L (2000) Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol 32:1687–1694. doi:10.1006/jmcc.2000.1204

    Article  PubMed  CAS  Google Scholar 

  46. Monserrat L, Hermida-Prieto M, Fernandez X, Rodriguez I, Dumont C, Cazon L, Cuesta MG, Gonzalez-Juanatey C, Peteiro J, Alvarez N, Penas-Lado M, Castro-Beiras A (2007) Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J 28:1953–1961. doi:10.1093/eurheartj/ehm239

    Article  PubMed  CAS  Google Scholar 

  47. Mogensen J, Perrot A, Andersen PS, Havndrup O, Klausen IC, Christiansen M, Bross P, Egeblad H, Bundgaard H, Osterziel KJ, Haltern G, Lapp H, Reinecke P, Gregersen N, Borglum AD (2004) Clinical and genetic characteristics of alpha cardiac actin gene mutations in hypertrophic cardiomyopathy. J Med Genet 41:e10

    Article  PubMed  CAS  Google Scholar 

  48. Van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ (2003) Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation 108:445–451. doi:10.1161/01.CIR.0000080896.52003.DF

    Article  PubMed  Google Scholar 

  49. Kudryashov DS, Grintsevich EE, Rubenstein PA, Reisler E (2010) A nucleotide state-sensing region on actin. J Biol Chem 285:25591–25601. doi:10.1074/jbc.M110.123869

    Article  PubMed  CAS  Google Scholar 

  50. Zheng X, Diraviyam K, Sept D (2007) Nucleotide effects on the structure and dynamics of actin. Biophys J 93:1277–1283. doi:10.1529/biophysj.107.109215

    Article  PubMed  CAS  Google Scholar 

  51. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44. doi:10.1038/347037a0

    Article  PubMed  CAS  Google Scholar 

  52. Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49. doi:10.1038/347044a0

    Article  PubMed  CAS  Google Scholar 

  53. Lorenz M, Popp D, Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol 234:826–836. doi:10.1006/jmbi.1993.1628

    Article  PubMed  CAS  Google Scholar 

  54. Houmeida A, Bennes R, Benyamin Y, Roustan C (1995) Sequences of actin implicated in the polymerization process: a simplified mathematical approach to probe the role of these segments. Biophys Chem 56:201–214 (pii: 030146229500038Y)

    Article  PubMed  CAS  Google Scholar 

  55. Way M, Gooch J, Pope B, Weeds AG (1989) Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis. J Cell Biol 109:593–605

    Article  PubMed  CAS  Google Scholar 

  56. Ohki T, Ohno C, Oyama K, Mikhailenko SV, Ishiwata S (2009) Purification of cytoplasmic actin by affinity chromatography using the C-terminal half of gelsolin. Biochem Biophys Res Commun 383:146–150. doi:10.1016/j.bbrc.2009.03.144

    Article  PubMed  CAS  Google Scholar 

  57. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319. doi:10.1038/nbt0396-315

    Article  PubMed  CAS  Google Scholar 

  58. Fister S (2004) Expression von humanem kardialem alpha-Aktin zur Untersuchung von Mutationen der hypertrophen Kardiomyopathie. Diploma thesis, Universität Bielefeld, Bielefeld

  59. Zalevsky J, Lempert L, Kranitz H, Mullins RD (2001) Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. Curr Biol 11:1903–1913. pii: S0960-9822(01)00603-0

    Article  PubMed  CAS  Google Scholar 

  60. Coulton A, Lehrer SS, Geeves MA (2006) Functional homodimers and heterodimers of recombinant smooth muscle tropomyosin. Biochemistry 45:12853–12858. doi:10.1021/bi0613224

    Article  PubMed  CAS  Google Scholar 

  61. Jacques AM, Briceno N, Messer AE, Gallon CE, Jalilzadeh S, Garcia E, Kikonda-Kanda G, Goddard J, Harding SE, Watkins H, Esteban MT, Tsang VT, McKenna WJ, Marston SB (2008) The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy. Cardiovasc Res 79:481–491. doi:10.1093/cvr/cvn094

    Article  PubMed  CAS  Google Scholar 

  62. Pant K, Watt J, Greenberg M, Jones M, Szczesna-Cordary D, Moore JR (2009) Removal of the cardiac myosin regulatory light chain increases isometric force production. FASEB J 23:3571–3580. doi:10.1096/fj.08-126672

    Article  PubMed  CAS  Google Scholar 

  63. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  64. Mannherz HG, Ballweber E, Galla M, Villard S, Granier C, Steegborn C, Schmidtmann A, Jaquet K, Pope B, Weeds AG (2007) Mapping the ADF/cofilin binding site on monomeric actin by competitive cross-linking and peptide array: evidence for a second binding site on monomeric actin. J Mol Biol 366:745–755. doi:10.1016/j.jmb.2006.11.100

    Article  PubMed  CAS  Google Scholar 

  65. Ajtai K, Venyaminov S (1983) CD study of the actin DNase I complex. FEBS Lett 151:94–96

    Article  PubMed  CAS  Google Scholar 

  66. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535. doi:10.1038/nprot.2006.204

    Article  PubMed  CAS  Google Scholar 

  67. Mannherz HG, Leigh JB, Leberman R, Pfrang H (1975) A specific 1:1 G-actin:DNAase i complex formed by the action of DNAase I on F-actin. FEBS Lett 60:34–38 (pii: 0014-5793(75)80412-1)

    Article  PubMed  CAS  Google Scholar 

  68. Kouyama T, Mihashi K (1981) Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 114:33–38

    Article  PubMed  CAS  Google Scholar 

  69. Mannherz HG, Brehme H, Lamp U (1975) Depolymerisation of F-actin to G-actin and its repolymerisation in the presence of analogs of adenosine triphosphate. Eur J Biochem 60:109–116

    Article  PubMed  CAS  Google Scholar 

  70. Mazur AJ, Gremm D, Dansranjavin T, Litwin M, Jockusch BM, Wegner A, Weeds AG, Mannherz HG (2010) Modulation of actin filament dynamics by actin-binding proteins residing in lamellipodia. Eur J Cell Biol 89:402–413. doi:10.1016/j.ejcb.2009.10.017

    Article  PubMed  CAS  Google Scholar 

  71. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  PubMed  CAS  Google Scholar 

  72. Bechem M, Pott L, Rennebaum H (1983) Atrial muscle cells from hearts of adult guinea-pigs in culture: a new preparation for cardiac cellular electrophysiology. Eur J Cell Biol 31:366–369

    PubMed  CAS  Google Scholar 

  73. Przygodzki T, Sokal A, Bryszewska M (2005) Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim Biophys Acta 1740:481–488. doi:10.1016/j.bbadis.2005.03.009

    Article  PubMed  CAS  Google Scholar 

  74. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  75. Grove BK, Kurer V, Lehner C, Doetschman TC, Perriard JC, Eppenberger HM (1984) A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies. J Cell Biol 98:518–524

    Article  PubMed  CAS  Google Scholar 

  76. Schüler H, Lindberg U, Schutt CE, Karlsson R (2000) Thermal unfolding of G-actin monitored with the DNase I-inhibition assay stabilities of actin isoforms. Eur J Biochem 267:476–486 (pii: ejb1023)

    Article  PubMed  Google Scholar 

  77. Mannherz HG, Goody RS, Konrad M, Nowak E (1980) The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem 104:367–379

    Article  PubMed  CAS  Google Scholar 

  78. Safer D (1989) An electrophoretic procedure for detecting proteins that bind actin monomers. Anal Biochem 178:32–37 (pii: 0003-2697(89)90351-5)

    Article  PubMed  CAS  Google Scholar 

  79. Schüler H, Karlsson R, Schutt CE, Lindberg U (2006) The connection between actin ATPase and polymerization. In: Advances in Molecular and Cell Biology, vol 37. Elsevier, New York, pp 49–66

  80. Carlier MF (1990) Actin polymerization and ATP hydrolysis. Adv Biophys 26:51–73 (pii: 0065-227X(90)90007-G)

    Article  PubMed  CAS  Google Scholar 

  81. Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108:139–150

    Article  PubMed  CAS  Google Scholar 

  82. Bryan J, Kurth MC (1984) Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem 259:7480–7487

    PubMed  CAS  Google Scholar 

  83. Janmey PA, Chaponnier C, Lind SE, Zaner KS, Stossel TP, Yin HL (1985) Interactions of gelsolin and gelsolin-actin complexes with actin. Effects of calcium on actin nucleation, filament severing, and end blocking. Biochemistry 24:3714–3723

    Article  PubMed  CAS  Google Scholar 

  84. Kelleher JF, Atkinson SJ, Pollard TD (1995) Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J Cell Biol 131:385–397

    Article  PubMed  CAS  Google Scholar 

  85. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465 (pii: S009286740300120X)

    Article  PubMed  CAS  Google Scholar 

  86. Michaelis L, Menten ML (1913) Die Kinetik der Invertin Wirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  87. Taylor RS, Weeds AG (1976) The magnesium-ion-dependent adenosine triphosphatase of bovine cardiac Myosin and its subfragment-1. Biochem J 159:301–315

    PubMed  CAS  Google Scholar 

  88. Pereira JS, Pavlov D, Nili M, Greaser M, Homsher E, Moss RL (2001) Kinetic differences in cardiac myosins with identical loop 1 sequences. J Biol Chem 276:4409–4415. doi:10.1074/jbc.M006441200

    Article  PubMed  CAS  Google Scholar 

  89. Wilkie AO (1994) The molecular basis of genetic dominance. J Med Genet 31:89–98

    Article  PubMed  CAS  Google Scholar 

  90. Schwartz K (1995) Familial hypertrophic cardiomyopathy. Nonsense versus missense mutations. Circulation 91:2865–2867

    Article  PubMed  CAS  Google Scholar 

  91. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706. doi:10.1146/annurev.cellbio.18.012502.105840

    Article  PubMed  CAS  Google Scholar 

  92. Ehler E, Gautel M (2008) The sarcomere and sarcomerogenesis. Adv Exp Med Biol 642:1–14

    Article  PubMed  CAS  Google Scholar 

  93. Littlefield R, Almenar-Queralt A, Fowler VM (2001) Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol 3:544–551. doi:10.1038/35078517

    Article  PubMed  CAS  Google Scholar 

  94. Nyman T, Schuler H, Korenbaum E, Schutt CE, Karlsson R, Lindberg U (2002) The role of MeH73 in actin polymerization and ATP hydrolysis. J Mol Biol 317:577–589. doi:10.1006/jmbi.2002.5436

    Article  PubMed  CAS  Google Scholar 

  95. Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ, Laing NG, Ampe C, Machesky LM (2004) Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117:3367–3377. doi:10.1242/jcs.01172

    Article  PubMed  CAS  Google Scholar 

  96. Kabsch W, Holmes KC (1995) The actin fold. FASEB J 9:167–174

    PubMed  CAS  Google Scholar 

  97. Pollard TD (1984) Polymerization of ADP-actin. J Cell Biol 99:769–777

    Article  PubMed  CAS  Google Scholar 

  98. Milligan RA (1996) Protein-protein interactions in the rigor actomyosin complex. Proc Natl Acad Sci USA 93:21–26

    Article  PubMed  CAS  Google Scholar 

  99. Lorenz M, Holmes KC (2010) The actin-myosin interface. Proc Natl Acad Sci USA 107:12529–12534. doi:10.1073/pnas.1003604107

    Article  PubMed  CAS  Google Scholar 

  100. dos Remedios CG, Moens PD (1995) Actin and the actomyosin interface: a review. Biochim Biophys Acta 1228:99–124

    Article  PubMed  Google Scholar 

  101. Song W, Dyer E, Stuckey DJ, Copeland O, Leung MC, Bayliss C, Messer A, Wilkinson R, Tremoleda JL, Schneider MD, Harding SE, Redwood CS, Clarke K, Nowak K, Monserrat L, Wells D, Marston SB (2011) Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse. J Biol Chem 286:27582–27593. doi:10.1074/jbc.M111.252320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Pott (Bochum) for supplying ARCs and Dipl. Biol. S. Fister and Dr. H. Milting (Herz- und Diabeteszentrum NRW, Bad Oeyenhausen) for the human cardiac actin clones, and Prof. Claycomb (New Orleans, Lousiana, USA) for supplying the HL-1 cells. Mass spectrometry analysis was kindly performed at the Hannover Medical School (MHH) Core Unit Mass Spectrometry/Proteomics by A. Pich. This work was supported by the ‘Deutsche Forschungsgemeinschaft’ Grant MA 807/17-2 (to H.G.M.), MA 1081/11-2 (to D.J.M), RA 1781/1-1 (to S.R.), the ‘Fonds der Chemischen Industrie’ Grant 684052 (to E.B.), the Hannover Biomedical Research School (to M.B.R.), the Deutsche Akademische Ausstauschdienst (DAAD) and FoRUM der Ruhr-Universität Bochum (to A.J.M.), the Schweizer National Fond (to C.A.S.), and the Max-Planck Society (to S.R. and E.B.).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Georg Mannherz.

Additional information

M. Müller and A. J. Mazur contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Mazur, A.J., Behrmann, E. et al. Functional characterization of the human α-cardiac actin mutations Y166C and M305L involved in hypertrophic cardiomyopathy. Cell. Mol. Life Sci. 69, 3457–3479 (2012). https://doi.org/10.1007/s00018-012-1030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1030-5

Keywords

Navigation