Skip to main content
Log in

Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

NADPH oxidase is potentially associated with acute pancreatitis by producing reactive oxygen species (ROS). We investigated whether NADPH oxidase mediates the activation of Janus kinase (Jak)2/signal transducers and activators of transcription (Stat)3 and mitogen-activated protein kinases (MAPKs) to induce the expression of transforming growth factor-β1 (TGF-β1) in cerulein-stimulated pancreatic acinar cells.

Treatment

AR42J cells were treated with an NADPH oxidase inhibitor diphenyleneiodonium (DPI) or a Jak2 inhibitor AG490. Other cells were transfected with antisense or sense oligonucleotides (AS or S ODNs) for NADPH oxidase subunit p22phox or p47phox.

Methods

TGF-β1 was determined by enzyme-linked immonosorbent assay. STAT3-DNA binding activity was measured by electrophoretic mobility shift assay. Levels of MAPKs as well as total and phospho-specific forms of Jak1/Stat3 were assessed by Western blot analysis.

Results

Cerulein induced increases in TGF-β1, Stat3-DNA binding activity and the activation of MAPKs in AR42J cells. AG490 suppressed these cerulein-induced changes, similar to inhibition by DPI. Cerulein-induced activation of Jak2/Stat3 and increases in MAPKs and TGF-β1 levels were inhibited in the cells transfected with AS ODN for p22phox and p47phox compared to S ODN controls.

Conclusion

Inhibition of NADPH oxidase may be beneficial for prevention and treatment of pancreatitis by suppressing Jak2/Stat3 and MAPKs and expression of TGF-β1 in pancreatic acinar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schoenberg MH, Büchler M, Gaspar M, Stinner A, Younes M, Melzner I, Bültmann B, Beger HG. Oxygen free radicals in acute pancreatitis of the rat. Gut. 1990;31:1138–43.

    Article  PubMed  CAS  Google Scholar 

  2. Petrone WF, English DK, Wong K, McCord JM. Free radicals and inflammation: superoxide dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci USA. 1980;77:1159–63.

    Article  PubMed  CAS  Google Scholar 

  3. Wisner J, Green DF, Renner I. Evidence for a role of oxygen derived free radicals in the pathogenesis of cerulein induced acute pancreatic in rat. Gut. 1988;29:1516–23.

    Article  PubMed  CAS  Google Scholar 

  4. Hofbauer B, Saluja AK, Lerch MM, Bhagat L, Bhatia M, Lee HS, Frossard JL, Adler G, Steer ML. Intra-acinar cell activation of trypsinogen during cerulein-induced pancreatitis in rat. Am J Physiol. 1998;275:G352–62.

    PubMed  CAS  Google Scholar 

  5. Lerch MM, Adler G. Experimental animal model of acute pancreatitis. Int J Pancreatol. 1994;15:159–70.

    PubMed  CAS  Google Scholar 

  6. Willemer S, Elasser HP, Alder G. Hormone-induced pancreatitis. Eur Surg Res. 1992;24(Suppl 1):29–39.

    Article  PubMed  Google Scholar 

  7. Willwmer S, Adler G. Mechanism of acute pancreatitis. Cellular and subcellular events. Int J Pancreatol. 1991;9:21–30.

    Google Scholar 

  8. Muller-Pillasch F, Menke A, Yamaguchi H, Elsasser HP, Bachem M, Adler G, Gress TM. TGF-beta and the extracellular matrix in pancreatitis. Hepatogastroenterology. 1999;46:2751–6.

    PubMed  CAS  Google Scholar 

  9. Shek FW, Benyon RC, Walker FM, McCrudden PR, Pender SL, Williams EJ, Johnson PA, Johnson CD, Bateman AC, Fine DR, Iredale JP. Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis. Am J Pathol. 2002;160:1787–98.

    Article  PubMed  CAS  Google Scholar 

  10. Ottaviano AJ, Sun L, Ananthanrayanan V, Munshi HG. Extracellular matrix-mediated membrane-type 1 matrix metalloproteinase expression in pancreatic ductal cells is regulated by transforming growth factor-beta1. Cancer Res. 2006;66:7032–40.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshikawa H, Kihara Y, Taguchi M, Yamaguchi T, Nakamura H, Otsuki M. Role of TGF-beta1 in the development of pancreatic fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol. 2002;282:G549–58.

    PubMed  CAS  Google Scholar 

  12. Lugea A, Nan L, French SW, Bezerra JA, Gukovskaya AS, Pandol SJ. Pancreas recovery following cerulein-induced pancreatitis is impaired in plasminogen-deficient mice. Gastroenterology. 2006;131:885–99.

    Article  PubMed  CAS  Google Scholar 

  13. Nagashio Y, Ueno H, Imamura M, Asaumi H, Watanabe S, Yamaguchi T, Taguchi M, Tashiro M, Otsuki M. Inhibition of transforming growth factor beta decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice. Lab Invest. 2004;84:1610–8.

    Article  PubMed  CAS  Google Scholar 

  14. Bjork J, Arfors KE. Oxygen free radicals and leukotriene B4 induced increase in vascular leakage is mediated by polymorphonuclear leukocytes. Agents Actions Suppl. 1982;11:63–72.

    PubMed  CAS  Google Scholar 

  15. Guice KS, Oldham KT, Caty MG, Johnson KJ, Ward PA. Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis. Ann Surg. 1989;210:740–7.

    Article  PubMed  CAS  Google Scholar 

  16. Yu JH, Lim JW, Namkung W, Kim H, Kim KH. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells. Lab Invest. 2002;82:1359–68.

    PubMed  CAS  Google Scholar 

  17. Ju KD, Yu JH, Kim H, Kim KH. Role of mitogen-activated protein kinases, NF-κB, and AP-1 on cerulein-induced IL-8 expression in pancreatic aincar cells. Ann NY Acad Sci. 2006;1090:368–74.

    Article  PubMed  CAS  Google Scholar 

  18. Babu BI, Malleo G, Genovese T, Mazzon E, Di Paola R, Crisafulli C, Caminiti R, Siriwardena AK, Cuzzocrea S. Green tea polyphenols ameliorate pancreatic injury in cerulein-induced murine acute pancreatitis. Pancreas. 2009;38(8):954–67.

    Article  PubMed  CAS  Google Scholar 

  19. Koh YH, Tamizhselvi R, Bhatia M. Extracellular signal-regulated kinase 1/2 and c-Jun NH2-terminal kinase, through nuclear factor-kappaB and activator protein-1, contribute to cerulein-induced expression of substance P and neurokinin-1 receptors in pancreatic acinar cells. J Pharmacol Exp Ther. 2010;332(3):940–8.

    Article  PubMed  CAS  Google Scholar 

  20. Hiraoka W, Vazquez N, Nieves-Neira W, Nieves-Neira W, Chanock SJ, Pommier Y. Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest. 1998;102:1961–8.

    Article  PubMed  CAS  Google Scholar 

  21. Arroyo A, Modrianský M, Serinkan FB, Bello RI, Matsura T, Jiang J, Tyurin VA, Tyurina YY, Fadeel B, Kagan VE. NADPH oxidase-dependent oxidation and externalization of phosphatidylserine during apoptosis in Me2SO-differentiated HL-60 cells. Role in phagocytic clearance. J Biol Chem. 2002;277:49965–75.

    Article  PubMed  CAS  Google Scholar 

  22. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  23. Yu JH, Lim JW, Kim H, Kim KH. NADPH oxidase mediates interukin-6 expression in cerulein-stimulated pancreatic acinar cells. Int J Biochem Cell Biol. 2005;37:1458–69.

    Article  PubMed  CAS  Google Scholar 

  24. Sarmiento N, Sánchez-Bernal C, Ayra M, Pérez N, Hernández-Hernández A, Calvo JJ, Sánchez-Yagüe J. Changes in the expression and dynamics of SHP-1 and SHP-2 during cerulein-induced acute pancreatitis in rats. Biochim Biophys Acta. 2008;1782(4):271–9.

    PubMed  CAS  Google Scholar 

  25. Sarmiento N, Sánchez-Bernal C, Pérez N, Sardina JL, Mangas A, Calvo JJ, Sánchez-Yagüe J. Rolipram and SP600125 suppress the early increase in PTP1B expression during cerulein-induced pancreatitis in rats. Pancreas. 2010;39(5):639–45.

    Article  PubMed  CAS  Google Scholar 

  26. Samuel I, Zaheer A, Fisher RA. In vitro evidence for role of ERK, p38, and JNK in exocrine pancreatic cytokine production. J Gastrointest Surg. 2006;10(10):1376–83.

    Article  PubMed  Google Scholar 

  27. Liu KD, Gaffen SL, Goldsmith MA. JAK/STAT signaling by cytokine receptors. Curr Opin Immunol. 1998;10:271–8.

    Article  PubMed  CAS  Google Scholar 

  28. Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

    Article  PubMed  CAS  Google Scholar 

  29. Carballo M, Conde M, El Bekay R, Martín-Nieto J, Camacho MJ, Monteseirín J, Conde J, Bedoya FJ, Sobrino F. Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem. 1999;274:17580–6.

    Article  PubMed  CAS  Google Scholar 

  30. Gallmeier E, Schäfer C, Moubarak P, Tietz A, Plössl I, Huss R, Göke B, Wagner AC. JAK and STAT proteins are expressed and activated by IFN-gamma in rat pancreatic acinar cells. J Cell Physiol. 2005;203(1):209–16.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrand A, Kowaski-Chauvel A, Bertrand C, Escrieut C, Mathieu A, Portolan G, Pradayrol L, Fourmy D, Dufresne M, Seva C. A novel mechanism for Jak2 activation by a G protein-coupled receptor, the CCK2R. J Biol Chem. 2005;280:10710–5.

    Article  PubMed  CAS  Google Scholar 

  32. Yu JH, Kim KH, Kim H. Suppression of IL-1β expression by the Jak2 inhibitor AG490 in cerulein-stimulated pancreatic acinar cells. Biochem Pharmacol. 2006;72:1555–62.

    Article  PubMed  CAS  Google Scholar 

  33. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM. Inhibition of acute lymphoblastic leukemia by a Jak2 inhibitor. Nature. 1996;379:645–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nielsen M, Kaltoft K, Nordahl M, Röpke C, Geisler C, Mustelin T, Dobson P, Svejgaard A, Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA. 1997;94:6764–9.

    Article  PubMed  CAS  Google Scholar 

  35. Burdelya L, Catlett-Falcone R, Levitzki A, Cheng F, Mora LB, Sotomayor E, Coppola D, Sun J, Sebti S, Dalton WS, Jove R, Yu H. Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther. 2002;1:893–9.

    PubMed  CAS  Google Scholar 

  36. Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11:1475–89.

    Article  PubMed  CAS  Google Scholar 

  37. Tallarida RJ, Murray RB. Manual of pharmacological calculations with computer programs. New York: Springer; 1987. p. 121–5.

    Google Scholar 

  38. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004;117:1281–3.

    Article  PubMed  CAS  Google Scholar 

  39. Simon AR, Rai U, Fanburg BL, Cochran BH. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998;275:C1640–52.

    PubMed  CAS  Google Scholar 

  40. Barrett WC, DeGnore JP, Konig S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry. 1999;38:6699–705.

    Article  PubMed  CAS  Google Scholar 

  41. Jones RD, Hancock JT, Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radic Biol Med. 2000;29:416–24.

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki Y, Ono Y, Hirabayashi Y. Rapid and specific reactive oxygen species generation via NADPH oxidase activation during Fas-mediated apoptosis. FEBS Lett. 1998;425:209–12.

    Article  PubMed  CAS  Google Scholar 

  43. Wyatt CN, Weir EK, Peers C. Diphenyleneiodonium blocks K+ and Ca2+ currents in type I cells isolated from the neonatal rat carotid body. Neurosci Lett. 1994;172:63–6.

    Article  PubMed  CAS  Google Scholar 

  44. Weir EK, Wyatt CN, Reeve HL, Huang J, Archer SL, Peers C. Diphenyleneiodonium inhibits both potassium and calcium currents in isolated pulmonary artery smooth muscle cells. J Appl Physiol. 1994;76:2611–5.

    PubMed  CAS  Google Scholar 

  45. Menon SG, Sarsour EH, Spitz DR, Higashikubo R, Sturm M, Zhang H, Goswami PC. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res. 2003;63:2109–17.

    PubMed  CAS  Google Scholar 

  46. Scaife RM. G2 cell cycle arrest, down-regulation of cyclin B and induction of mitotic castrophe by the flavoprotein inhibitor diphenyleneiodonium. Mol Cancer Ther. 2004;3:1229–37.

    PubMed  CAS  Google Scholar 

  47. Li N, Karin M. Is NF-κB the sensor of oxidative stress? FASEB J. 1999;13:1137–43.

    PubMed  CAS  Google Scholar 

  48. Anderson MT, Staal FJ, Gitler C, Herzenberg LA, Herzenberg LA. Separation of oxidant-initiated and redox-regulated steps in the NF-κB signal transduction pathway. Proc Natl Acad Sci USA. 1994;91:11527–31.

    Article  PubMed  CAS  Google Scholar 

  49. Brennan P, O’Neill LA. Effects of oxidants and antioxidants on nuclear factor kappa B activation in three different cell lines: evidence against a universal hypothesis involving oxygen radicals. Biochim Biophys Acta. 1995;1260:167–75.

    PubMed  Google Scholar 

  50. Samanta AK, Lin H, Kantarjian STH, Arlinghaus RB. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res. 2006;66:6468–72.

    Article  PubMed  CAS  Google Scholar 

  51. Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, Anania FA. Concomitant activation of the JAK/STAT, PI3 K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67:2497–507.

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Trush MA. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Comm. 1998;253:295–9.

    Article  PubMed  CAS  Google Scholar 

  53. Christophe J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am J Physiol. 1994;266:G963–71.

    PubMed  CAS  Google Scholar 

  54. Piiper A, Leser J, Lutz MP, Beil M, Zenzem S. Subcellular distribution and function of Rab3A-D in pancreatic acinar AR42J cells. Biochem Biophys Res Commun. 2001;287:746–51.

    Article  PubMed  CAS  Google Scholar 

  55. Sata N, Klonowski-Stumpe H, Han B, Luthen R, Haussinger D, Niederau C. Cytotoxicity of peroxynitrite in rat pancreatic acinar AR42J cells. Pancreas. 1997;15:278–84.

    Article  PubMed  CAS  Google Scholar 

  56. Masamune A, Sasaki Y, Satoh A, Fujita M, Yoshida M, Shimosegawa T. Lysophosphatidylcholine induces apoptosis in AR42J cells. Pancreas. 2001;22:75–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0001669) and a grant (Joint Research Project under the Korea-Japan Basic Scientific Cooperation Program) from NRF (F01-2009-000-10101-0). H. Kim is grateful to Brain Korea 21 Project, College of Human Ecology, Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeyoung Kim.

Additional information

Responsible Editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, K.D., Lim, J.W., Kim, K.H. et al. Potential role of NADPH oxidase-mediated activation of Jak2/Stat3 and mitogen-activated protein kinases and expression of TGF-β1 in the pathophysiology of acute pancreatitis. Inflamm. Res. 60, 791–800 (2011). https://doi.org/10.1007/s00011-011-0335-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0335-4

Keywords

Navigation