Skip to main content
Log in

Applications of Clifford’s Geometric Algebra

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We survey the development of Clifford’s geometric algebra and some of its engineering applications during the last 15 years. Several recently developed applications and their merits are discussed in some detail. We thus hope to clearly demonstrate the benefit of developing problem solutions in a unified framework for algebra and geometry with the widest possible scope: from quantum computing and electromagnetism to satellite navigation, from neural computing to camera geometry, image processing, robotics and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abłamowicz, P. Lounesto, J.M. Parra (eds.), Clifford Algebras with Numeric and Symbolic Computations. Birkhauser, Basel 1996.

  2. R. Abłamowicz, G. Sobczyk (eds.), Lectures on Clifford (Geometric) Algebras and Applications. Birkhauser, Basel 2004.

  3. R. Abłamowicz (ed.), Clifford Algebras – Applications to Mathematics, Physics, and Engineering, PIM 34. Birkhauser, Basel 2004.

  4. A. Aristidou and J. Lasenby, Inverse Kinematics Solutions Using Conformal Geometric Algebra. Chapter 3 of [27], pp. 47–62.

  5. L. Avenau et al, A Framework for n-Dimensional Visibility Computations. Chapter 14 of [27], pp. 273–294.

  6. T. Batard, M. Berthier, C. Saint-Jean, Clifford Fourier transform for color image processing. Chap. 8. in: [13], pp. 135–161.

  7. T. Batard, M. Berthier, The Spinor Representation of Images. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013.

  8. W.E. Baylis (ed.), Clifford (Geometric) Algebras, with Applications in Physics, Mathematics, and Engineering. Birkhauser, Basel 1996.

  9. E.J. Bayro-Corrochano, G. Sobczyk (eds.), Geometric Algebra with Applications in Science and Engineering. Birkhauser, Basel, 2001.

  10. E.J. Bayro-Corrochano, Geometric Computing for Perception Action Systems. Springer, Berlin, 2001.

  11. E.J. Bayro-Corrochano, Geometric Neural Computing. IEEE Transac. on Neural Networks, Vol. 12, No. 5, Sep. 2001, pp. 968–986.

  12. E.J. Bayro-Corrochano, Clifford Support Vector Machine. IEEE Transac. on Neural Networks, Vol. 21, No. 11, Nov. 2010, pp. 1731–1746.

  13. E.J. Bayro-Corrochano, G. Scheuermann (eds.), Geometric Algebra Computing in Engineering and Computer Science. Springer, Berlin, 2010.

  14. E.J. Bayro-Corrochano, Quaternion Atomic Function for Image Processing. Chapter 8 of [27], pp. 151–173.

  15. H. De Bie, F. Sommen, Vector and bivector Fourier transforms in Clifford analysis. In 18th Int. Conf. on the Appl. of Comp. Sci. and Math. in Arch. and Civ. Eng., K. Gürlebeck, and C. Könke (eds.), Weimar, Germany, 07–09 July 2009, 11 pp.

  16. H. De Bie, Y. Xu, On the Clifford-Fourier transform. Int. Math. Res. Nat. IMRN 22 (2011), pp. 5123–5163.

  17. F. Brackx, B. De Knock, H. De Schepper, Generalized multidimensional Hilbert transforms in Clifford analysis. International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 98145, pp. 1–19, (2006), doi:10.1155/IJMMS/2006/98145.

  18. F. Brackx, E. Hitzer, S.J. Sangwine, History of quaternion and Clifford Fourier transforms and wavelets. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013.

  19. B. Braden, Picturing Functions of Complex Variables. The College Mathematics Journal, (1985).

  20. B. Braden, The Vector Field Approach in Complex Analysis, Visualization in Teaching and Learning Mathematics. Math. Assoc. Am. (1991).

  21. S. Buchholz, A Theory of Neural Computation with Clifford Algebras, PhD thesis, University of Kiel, 2005.

  22. Buchholz S, Sommer G: On Clifford neurons and Clifford multi-layer perceptrons. In Neural Networks 21, 925–935 (2008)

    Article  MATH  Google Scholar 

  23. T. Bülow, M. Felsberg, G. Sommer, Non-commutative hypercomplex Fourier transforms of multidimensional signals. Chapter 8 in [85].

  24. L. Candy, J. Lasenby, Attitude and Position Tracking. Chapter 6 of [27], pp. 105–125.

  25. L. Dorst, C. Doran, J. Lasenby (eds.), Applications of Geometric Algebra in Computer Science and Engineering. Birkhauser, Basel 2002.

  26. L. Dorst, D. Fontijne, S. Mann, Geometric Algebra for Computer Science – An Object-Oriented Approach to Geometry, Morgan Kaufmann, San Francisco, 2007.

  27. L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice. Springer, Berlin, 2011.

  28. J. Ebling, G. Scheuermann, Clifford Fourier transform on vector fields. IEEE Trans. Vis. Comput. Graph. Vol. 11, pp. 469–479 (2005).

  29. T.A. Ell, Quaternionic-Fourier Transform for Analysis of Two-dimensional Linear Time-Invariant Partial Differential Systems. in Proceedings of the 32nd IEEE Conference on Decision and Control, December 15-17, 2 (1993), 1830– 1841.

  30. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. Vol. 49(2), pp. 3136–3144 (2007).

  31. D. Fontijne, L. Dorst, Modeling 3D Euclidean Geometry. IEEE Computer Graphics and Applications, Volume 23 Issue 2, March 2003, pp. 68–78.

  32. D. Fontijne, L. Dorst, Reconstructing Rotations and Rigid Body Motions from Exact Point Correspondences Through Reflections. Chapter 4 of [27], pp. 63–78.

  33. R. Fueter, Analytische Theorie einer Quaternionenvariablen. Comment. Math. Helv. 4, pp. 9–20 (1932).

  34. R. Fueter, Die Funktionentheorie der Differentialgleichung Δu und Δ Δu mit 4 Variablen. Comment. Math. Helv. 7, pp. 307–330 (1935).

  35. P. Girard et al, Analytic video (2D+t) signals by Clifford Fourier transforms in multiquaternion Grassmann-Hamilton-Clifford algebras. Accepted for [56].

  36. A. Görlitz, H. Seibert, D. Hildenbrand, Registration of Multichannel Images using Geometric Algebra. In V. Skala, E. Hitzer (eds.), Workshop Proceedings: Computer Graphics, Computer Vision and Mathematics 2010, Sep. 07– 10, 2010, Brno University of Technology, Brno, Czech Republic, published by UNION Agency, Plzen (2010), pp. 56–64.

  37. H. Grassmann, translated by L. Kannenberg, A New Brach of Mathematics, The Ausdehnungslehre of 1844, and Other Works. Open Court, Chicago, 1995.

  38. K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. MMIP 1, John Wiley & Sons, New York 1997.

  39. K. Gürlebeck (ed.), Electronic conference proceedings of topical session No. 8 on Quaternion and Clifford FTs and wavelets, at ICCA9, Weimar, July 2011.

  40. K. Gürlebeck, K. Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-dimensional Space. Birkhauser, Basel, 2008.

  41. D. Hestenes, Space-Time Algebra. Gordon and Breach, New York, 1966.

  42. D. Hestenes, Neural Networks. Vol. 7, No. 1 (1994), pp. 79–88.

  43. D. Hestenes, New foundations for classical mechanics. Kluwer, Dordrecht, 1999.

  44. D. Hestenes, R. Ziegler, Projective Geometry with Clifford Algebra. Acta Applicandae Mathematicae, Vol. 23 (1991), pp. 25–63.

  45. D. Hildenbrand, Tutorial Geometric Computing in Computer Graphics using Conformal Geometric Algebra. Computers & Graphics 2005: Vol. 29, No. 5, Oct. 2005.

  46. D. Hildenbrand, H. Lange, F. Stock, A. Koch, Efficient Inverse Kinematics Algorithm Based on Conformal Geometric Algebra Using Reconfigurable Hardware. In Braz, J. (ed.): GRAPP 2008, Third International Conference on Computer Graphics Theory and Applications. Proceedings: Funchal, Madeira, Portugal, January 22 – 25, 2008. Porto: INSTICC Press, pp. 300–307 (2008).

  47. A. Hirose (Ed.), Complex-Valued Neural Networks.World Scientific Publishing, Singapore (2003).

  48. A. Hirose, Complex-Valued Neural Networks. Series on Studies in Computational Intelligence, Vol.32, Springer-Verlag (2006).

  49. E. Hitzer, B. Mawardi, Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4). In P. Angles (ed.), Adv. appl. Clifford alg. 18 (S3-4) (2008), pp. 715-736.

  50. E. Hitzer, Quaternion Fourier Transform on Quaternion Fields and Generalizations. Adv. appl. Clifford alg. 17 (3) (2007), 497–517. E. Hitzer, Directional Uncertainty Principle for Quaternion Fourier Transforms, Adv. appl. Clifford alg. 20 (2) (2010), 271–284.

  51. E. Hitzer, S. Sangwine, The orthogonal planes split of quaternions, in [39].

  52. E. Hitzer, R. Abłamowicz, Geometric roots of −1 in Clifford algebras Cl(p, q) with pq ≤  4. Adv. appl. Clifford alg. 21 (1) (2010), pp. 121–144.

  53. E. Hitzer, OPS-QFTs: A new type of quaternion Fourier transforms based on the orthogonal planes split with one or two general pure quaternions. Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 1389 (2011), pp. 280–283; doi:10.1063/1.3636721

  54. E. Hitzer, Introduction to Clifford’s geometric algebra. Journal of Japanese Society for Instrument and Control Engineers (SICE), Vol. 51, No. 4 (2012), pp. 338–350.

  55. E. Hitzer, J. Helmstetter, R. Abłamowicz, Square roots of −1 in real Clifford algebras. Accepted for: E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM), Birkhauser, Basel, 2013. Preprints: http://arxiv.org/abs/1204.4576, http://www.tntech.edu/files/math/reports/TR_2012_3.pd.

  56. E. Hitzer, S.J. Sangwine (eds.), Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics (TIM), Birkhauser, Basel, 2013.

  57. M. Kobayashi, Three-Dimensional Associative Memory Using Exterior Product. IEE Trans. EIS Vol.124, No.1 (2004), pp.150-156 (In Japanese).

  58. Y. Kuroe, Models of Clifford Recurrent Neural Networks and Their Dynamics. Proc. Int. Joint Conf. on Neural Networks (2011), pp.1035-1041.

  59. Y. Kuroe, S. Tanigawa, H. Iima, Models of Hopfield-type Clifford Neural Networks and Their Energy Functions - Hyperbolic and Dual Valued Networks -. Proc. Int. Conf. Neural Information Processing, Lecture Notes in Computer Science 7062, Springer (2011), pp.560-569.

  60. J. Lasenby et al, New Geometric Methods for Computer Vision: an application to structure and motion estimation, International Journal of Computer Vision. Vol. 26 (3) (1998), pp. 191-213.

  61. J. Lasenby, A. Stevenson, Using Geometric Algebra for Optical Motion Capture. chp. 8 in [9], pp. 147-169.

  62. H. Li, P.J. Olver, G. Sommer (eds.), Computer Algebra and Geometric Algebra with Applications. Proc. of IWMM & GIAW2004, LNCS 3519, Springer, Berlin 2005.

  63. H. Li, Invariant Algebras and Geometric Reasoning. World Scientific, Singapore, 2008.

  64. P. Lounesto, Clifford Algebras ans Spinors, 2nd ed., Cambridge University Press, UK, 2001.

  65. J. Menneson, C. Saint-Jean, L. Mascarilla, Color Object Recognition Based on a Clifford Fourier Transform. Chapter 9 of [27], pp. 175–191.

  66. D. Nelson (ed.), The Penguin Dictionary of Mathematics. Penguin Books, London, 1998.

  67. T. Nitta, Complex-Valued Neural Network and Complex-Valued Back- Propagation Learning Algorithm. In: Advances in Imaging and Electron Physics, P.W. Hawkes (Ed.), Vol.152, pp.153-221, Elsevier, Amsterdam (2008).

  68. T. Nitta (Ed.), Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. Information Science Reference, Pennsylvania (2009).

  69. T. Nitta, H. de Garis, A 3D Vector Version of the Back-Propagation Algorithm., Proc. Int. Joint Conf. Neural Networks, Vol. 2 (1992), pp. 511–516.

  70. T. Nitta, A Back-Propagation Algorithm for Neural Networks Based on 3D Vector Product. Proc. IEEE/INNS Int. Joint Conf. Neural Networks, IJCNN’93- Nagoya, Oct. 25–29, Vol. 1 (1993), pp. 589–592.

  71. T. Nitta, Ability of the 3D Vector Version of the Back-Propagation to Learn 3D Motion. Proc. INNS World Congress on Neural Networks, WCNN’94-San Diego, June 4-9, Vol. 3 (1994), pp. 262–267.

  72. T. Nitta, Three-Dimensional Vector Valued Neural Network and its Generalization Ability. Neural Information Processing - Letters and Reviews, Vol. 10, No. 10 (2006), pp. 237–242.

  73. T. Nitta, N-Dimensional Vector Neuron. Proc. IJCAI Workshop on Complex- Valued Neural Networks and Neuro-Computing: Novel Methods, Applications and Implementations (2007), pp. 2–7.

  74. J.K. Pearson, D.L. Bisset, Back Propagation in a Clifford Algebra. Proc. Int. Conf. Artificial Neural Networks, Vol.2, I. Aleksander and J. Taylor (Ed.) (1992), pp. 413–416.

  75. J.K. Pearson, D.L. Bisset, Neural Networks in the Clifford Domain. Proc. IEEE World Congress on Computational Intelligence(WCCI)/IEEE Int. Conf. Neural Networks(ICNN), Vol. 3 (1994), pp. 1465–1469.

  76. C. Perwass, CLUCalc homepage. URL: http://www.CLUCalc.info

  77. C. Perwass, Geometric Algebra with Applications in Engineering. Springer, Berlin, 2009.

  78. A. Rockwood, S. Binderwala, A toy vector field based on geometric algebra. In Applications of Geometric Algebra in Computer Science and Engineering (L. Dorst, C. Doran and J. Lasenby, Eds.), Birkhäuser, Boston (2001), pp. 179–185.

  79. S. J. Sangwine, Biquaternion (complexified quaternion) roots of −1. Advances in Applied Clifford Algebras, 16 (1) (2006), pp. 63–68.

  80. Sangwine S.J.: Fourier transform of color images using quaternion, or hypercomplex, numbers. Electronic Letters, 32(21), 1979–1980 (1996)

    Article  Google Scholar 

  81. G. Scheuermann, H. Krüger, M. Menzel and A. Rockwood, Visualizing Nonlinear Vector Field Topology., IEEE Trans. Visualization and Computer Graphics, Vol.4, No.2 (1998), pp.109-116.

  82. P. Serre, N. Anwer, J.X. Yang, On the Use of Conformal Geometric Algebra in Geometric Constraint Solving. Chapter 11 of [27], pp. 217–232.

  83. F. Smach et al, Generalized Fourier descriptors with applications to objects recognition in SVM context. J. Math. Imaging Vis. Vol. 30(1) (2008), pp. 43– 71.

    Google Scholar 

  84. G. Sommer, Y.Y. Zeevi (eds.), Algebraic Frames for the Perception-Action Cycle. Proc. of AFPAC 2000, LNCS 1888, Springer, Heidelberg, 2000.

  85. G. Sommer (ed.), Geometric computing with Clifford Algebras: Theoretical Foundations and Applications in Computer Vision and Robotics. Springer, Berlin, 2001.

  86. J. Stolfi, Oriented Projective Geometry: A Framework for Geometric Computing. Academic Press, San Diego (1991).

  87. R. Valkenburg, X. Lin, R. Klette, Self-calibration of target positions using geometric algebra. In Proc. of Image and Vision Computing New Zealand (2004), pp. 221–226.

  88. R. Valkenburg and L. Dorst, Estimating Motors from a Variety of Geometric Data in 3D. Chapter 2 of [27], pp. 25–45.

  89. R. Valkenburg, N. Alwesh, Calibration of Target Positions Using Conformal Geometric Algebra. Chapter 7 of [27], pp. 127–148.

  90. V. N. Vapnik, The Nature of Statistical Learning Theory. Springer, New York, 1995.

  91. D. Wood, G. Rawlins, S. Schuierer, Convexity, Visibility, and Orthogonal Polygons. In R. Melter, A. Rosenfeld, P. Bhattacharya (eds.), Vision Geometry, Proc. of an AMS special session, October 20-21, 1989, Contemporary Mathematics, Vol. 119, AMS, Providence, RI, 1991, pp. 225–237. Wikipedia (04 January 2011): Visibility, http://en.wikipedia.org/wiki/Visibility_(geometry)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Hitzer.

Additional information

Soli Deo Gloria

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hitzer, E., Nitta, T. & Kuroe, Y. Applications of Clifford’s Geometric Algebra. Adv. Appl. Clifford Algebras 23, 377–404 (2013). https://doi.org/10.1007/s00006-013-0378-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-013-0378-4

Keywords

Navigation