Skip to main content
Log in

Dark matter and Higgs bosons in the MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate dark matter (DM) in the context of the minimal supersymmetric extension of the standard model (MSSM). We scan through the MSSM parameter space and search for solutions that (a) are consistent with the Higgs discovery and other collider searches; (b) satisfy the flavor constraints from B physics; (c) give a DM candidate with the correct thermal relic density; and (d) are allowed by the DM direct detection experiments. For the surviving models with our parameter scan, we find the following features: (1) The DM candidate is largely a Bino-like neutralino with non-zero but less than 20% Wino and Higgsino fractions; (2) The relic density requirement clearly pins down the solutions from the Z and Higgs resonances (Z, h, H, A funnels) and co-annihilations; (3) Future direct search experiments will likely fully cover the Z, h funnel regions, and H, A funnel regions as well except for the “blind spots”; (4) Future indirect search experiments will be more sensitive to the CP-odd Higgs exchange due to its s-wave nature; (5) The branching fraction for the SM-like Higgs decay to DM can be as high as 10%, while those from heavier Higgs decays to neutralinos and charginos can be as high as 20%. We show that collider searches provide valuable information complementary to what may be obtained from direct detections and astroparticle observations. In particular, the Z- and h-funnels with a predicted low LSP mass should be accessible at future colliders. Overall, the Higgs bosons may play an essential role as the portal to the dark sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    ADS  Google Scholar 

  2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    ADS  Google Scholar 

  3. M. Drees and G. Gerbier, Mini-review of dark matter: 2012, arXiv:1204.2373 [INSPIRE].

  4. DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    ADS  Google Scholar 

  5. CoGeNT collaboration, C. Aalseth et al., Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. 107 (2011) 141301 [arXiv:1106.0650] [INSPIRE].

    ADS  Google Scholar 

  6. CRESST collaboration G. Angloher et al., Results from 730 kg days of the CRESST-II dark matter search, Eur. Phys. J. C 72 (2012) 1971 [arXiv:1109.0702] [INSPIRE].

  7. CDMS collaboration, R. Agnese et al., Silicon detector dark matter results from the final exposure of CDMS II, Phys. Rev. Lett. (2013) [arXiv:1304.4279] [INSPIRE].

  8. XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [arXiv:1104.3088] [INSPIRE].

    ADS  Google Scholar 

  9. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    ADS  Google Scholar 

  10. LUX collaboration, D. Akerib et al., The Large Underground Xenon (LUX) experiment, Nucl. Instrum. Meth. A 704 (2013) 111 [arXiv:1211.3788] [INSPIRE].

    ADS  Google Scholar 

  11. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  12. TEXONO collaboration, H. Li et al., Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector, Phys. Rev. Lett. 110 (2013) 261301 [arXiv:1303.0925] [INSPIRE].

    ADS  Google Scholar 

  13. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

    ADS  Google Scholar 

  14. AMS collaboration, First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett. 110 (2013) 141102.

    ADS  Google Scholar 

  15. H.E.S.S. collaboration, A. Abramowski et al., Search for photon line-like signatures from dark matter annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

    ADS  Google Scholar 

  16. MAGIC collaboration, J. Aleksic et al., Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE].

    ADS  Google Scholar 

  17. Veritas collaboration, T. Arlen et al., Constraints on cosmic rays, magnetic fields and dark matter from gamma-ray observations of the Coma cluster of galaxies with VERITAS and Fermi, Astrophys. J. 757 (2012) 123 [arXiv:1208.0676] [INSPIRE].

    ADS  Google Scholar 

  18. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  19. WMAP collaboration, D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    ADS  Google Scholar 

  20. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

    ADS  Google Scholar 

  21. S. Galli, F. Iocco, G. Bertone and A. Melchiorri, CMB constraints on dark matter models with large annihilation cross-section, Phys. Rev. D 80 (2009) 023505 [arXiv:0905.0003] [INSPIRE].

    ADS  Google Scholar 

  22. G. Hutsi, J. Chluba, A. Hektor and M. Raidal, WMAP7 and future CMB constraints on annihilating dark matter: implications on GeV-scale WIMPs, Astron. Astrophys. 535 (2011) A26 [arXiv:1103.2766] [INSPIRE].

    ADS  Google Scholar 

  23. S. Galli, F. Iocco, G. Bertone and A. Melchiorri, Updated CMB constraints on Dark Matter annihilation cross-sections, Phys. Rev. D 84 (2011) 027302 [arXiv:1106.1528] [INSPIRE].

    ADS  Google Scholar 

  24. A. Natarajan, A closer look at CMB constraints on WIMP dark matter, Phys. Rev. D 85 (2012) 083517 [arXiv:1201.3939] [INSPIRE].

    ADS  Google Scholar 

  25. G. Giesen, J. Lesgourgues, B. Audren and Y. Ali-Haimoud, CMB photons shedding light on dark matter, JCAP 12 (2012) 008 [arXiv:1209.0247] [INSPIRE].

    ADS  Google Scholar 

  26. C. Evoli, S. Pandolfi and A. Ferrara, CMB constraints on light dark matter candidates, arXiv:1210.6845 [INSPIRE].

  27. A. Geringer-Sameth and S.M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. 107 (2011) 241303 [arXiv:1108.2914] [INSPIRE].

    ADS  Google Scholar 

  28. R. Cotta et al., Constraints on the pMSSM from LAT observations of dwarf spheroidal galaxies, JCAP 04 (2012) 016 [arXiv:1111.2604] [INSPIRE].

    ADS  Google Scholar 

  29. A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski and Y.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM, Phys. Rev. D 85 (2012) 075012 [arXiv:1111.6098] [INSPIRE].

    ADS  Google Scholar 

  30. L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, Phys. Rev. D 86 (2012) 095005 [arXiv:1202.1503] [INSPIRE].

    ADS  Google Scholar 

  31. Y.-L.S. Tsai, Q. Yuan and X. Huang, A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids, JCAP 03 (2013) 018 [arXiv:1212.3990] [INSPIRE].

    Google Scholar 

  32. J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].

    ADS  Google Scholar 

  33. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  34. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Google Scholar 

  35. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

  36. G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].

    ADS  Google Scholar 

  37. M. Farina et al., Implications of XENON100 and LHC results for dark matter models, Nucl. Phys. B 853 (2011) 607 [arXiv:1104.3572] [INSPIRE].

    ADS  Google Scholar 

  38. D. Albornoz Vasquez, G. Bélanger, R. Godbole and A. Pukhov, The Higgs boson in the MSSM in light of the LHC, Phys. Rev. D 85 (2012) 115013 [arXiv:1112.2200] [INSPIRE].

    ADS  Google Scholar 

  39. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    ADS  Google Scholar 

  40. A. Bottino, N. Fornengo and S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 095013 [arXiv:1112.5666] [INSPIRE].

    ADS  Google Scholar 

  41. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    ADS  Google Scholar 

  42. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    ADS  Google Scholar 

  43. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    ADS  Google Scholar 

  44. J.-J. Cao, Z. Heng, J.M. Yang and J. Zhu, Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC?, JHEP 06 (2012) 145 [arXiv:1203.0694] [INSPIRE].

    ADS  Google Scholar 

  45. A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].

    ADS  Google Scholar 

  46. H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    ADS  Google Scholar 

  47. G. Bélanger, S. Biswas, C. Boehm and B. Mukhopadhyaya, Light neutralino dark matter in the MSSM and its implication for LHC searches for staus, JHEP 12 (2012) 076 [arXiv:1206.5404] [INSPIRE].

    Google Scholar 

  48. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    ADS  Google Scholar 

  49. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    ADS  Google Scholar 

  50. H. Baer, V. Barger, A. Lessa and X. Tata, Discovery potential for SUSY at a high luminosity upgrade of LHC14, Phys. Rev. D 86 (2012) 117701 [arXiv:1207.4846] [INSPIRE].

    ADS  Google Scholar 

  51. R. Allahverdi, B. Dutta and K. Sinha, Non-thermal higgsino dark matter: cosmological motivations and implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].

    ADS  Google Scholar 

  52. S. Mohanty, S. Rao and D. Roy, Predictions of a natural SUSY dark matter model for direct and indirect detection experiments, JHEP 11 (2012) 175 [arXiv:1208.0894] [INSPIRE].

    ADS  Google Scholar 

  53. H. Baer, Radiative natural supersymmetry with mixed axion/higgsino cold dark matter, AIP Conf. Proc. 1534 (2012) 39 [arXiv:1210.7852] [INSPIRE].

    ADS  Google Scholar 

  54. J. Hisano, K. Ishiwata and N. Nagata, Direct search of dark matter in high-scale supersymmetry, Phys. Rev. D 87 (2013) 035020 [arXiv:1210.5985] [INSPIRE].

    ADS  Google Scholar 

  55. L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    ADS  Google Scholar 

  56. W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect Probes of the MSSM after the Higgs Discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].

    ADS  Google Scholar 

  57. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, More energy, more searches, but the pMSSM lives on, Phys. Rev. D 88 (2013) 035002 [arXiv:1211.1981] [INSPIRE].

    ADS  Google Scholar 

  58. A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].

    ADS  Google Scholar 

  59. C. Strege et al., Global fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints, JCAP 04 (2013) 013 [arXiv:1212.2636] [INSPIRE].

    ADS  Google Scholar 

  60. K. Kowalska, L. Roszkowski and E.M. Sessolo, Two ultimate tests of constrained supersymmetry, JHEP 06 (2013) 078 [arXiv:1302.5956] [INSPIRE].

    ADS  Google Scholar 

  61. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  62. LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Google Scholar 

  63. M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].

    ADS  Google Scholar 

  64. J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].

    ADS  Google Scholar 

  65. M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].

    ADS  Google Scholar 

  66. K. Griest, Cross-sections, relic abundance and detection rates for neutralino dark matter, Phys. Rev. D 38 (1988) 2357 [Erratum ibid. D 39 (1989) 3802] [INSPIRE].

    Google Scholar 

  67. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    ADS  Google Scholar 

  68. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  69. V. Barger, P. Langacker, H.-S. Lee and G. Shaughnessy, Higgs sector in extensions of the MSSM, Phys. Rev. D 73 (2006) 115010 [hep-ph/0603247] [INSPIRE].

    ADS  Google Scholar 

  70. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].

    ADS  Google Scholar 

  71. J.L. Feng, Naturalness and the status of supersymmetry, arXiv:1302.6587 [INSPIRE].

  72. N. Arkani-Hamed, A. Delgado and G. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Google Scholar 

  73. M. Perelstein and B. Shakya, Fine-tuning implications of direct dark matter searches in the MSSM, JHEP 10 (2011) 142 [arXiv:1107.5048] [INSPIRE].

    ADS  Google Scholar 

  74. P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of neutralino dark matter, JHEP 07 (2013) 094 [arXiv:1207.4434] [INSPIRE].

    ADS  Google Scholar 

  75. C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].

    ADS  Google Scholar 

  76. CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].

    ADS  Google Scholar 

  77. T. Han, S. Padhi and S. Su, Electroweakinos in the light of the Higgs boson, arXiv:1309.5966 [INSPIRE].

  78. A. Chatterjee, M. Drees and S. Kulkarni, Radiative corrections to the neutralino dark matter relic densityAn effective coupling approach, Phys. Rev. D 86 (2012) 105025 [arXiv:1209.2328] [INSPIRE].

    ADS  Google Scholar 

  79. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    ADS  MATH  Google Scholar 

  80. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    ADS  MATH  Google Scholar 

  81. CMS collaboration, Search for the standard model higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044 (2012).

  82. CMS collaboration, Higgs to tau tau (SM) (HCP), CMS-PAS-HIG-12-043 (2012).

  83. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042 (2012).

  84. CMS collaboration, Updated results on the new boson discovered in the search for the standard model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041 (2012).

  85. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).

  86. ATLAS collaboration, An update of combined measurements of the new Higgs-like boson with high mass resolution channels, ATLAS-CONF-2012-170 (2012).

  87. ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the HZZ(*) → 4l channel with the ATLAS detector, ATLAS-CONF-2012-169 (2012).

  88. ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).

  89. ATLAS collaboration, Study of the channel \( H\to {Z^{*}}Z\to {\ell^{+}}{\ell^{-}}q\overline{q} \) in the mass range 120-180 GeV with the ATLAS Detector at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-163 (2012).

  90. ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

  91. ATLAS collaboration, Search for the Standard Model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).

  92. ATLAS collaboration, Search for the standard model Higgs boson in Hττ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).

  93. ATLAS collaboration, Update of the HWW (*)eνμν analysis with 13 fb −1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector, ATLAS-CONF-2012-158 (2012).

  94. B. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].

    ADS  Google Scholar 

  95. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    ADS  MATH  Google Scholar 

  96. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  97. CMS collabroation, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).

  98. R. Barbieri and G. Giudice, bsγ decay and supersymmetry, Phys. Lett. B 309 (1993) 86 [hep-ph/9303270] [INSPIRE].

    ADS  Google Scholar 

  99. M. Misiak et al., Estimate of \( B\left( {\overline{B}\to {X_s}\gamma } \right) \) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Google Scholar 

  100. T. Becher and M. Neubert, Analysis of \( Br\left( {\overline{B}\to X\left( {s\gamma } \right)} \right) \) at NNLO with a cut on photon energy, Phys. Rev. Lett. 98 (2007) 022003 [hep-ph/0610067] [INSPIRE].

    ADS  Google Scholar 

  101. M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at subleading power and irreducible uncertainties in \( \overline{B}\to {X_s}\gamma \) decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].

    ADS  Google Scholar 

  102. K. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    ADS  Google Scholar 

  103. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for \( BR\left( {{B_{s,d }}\to {\mu^{+}}{\mu^{-}}} \right) \), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  104. K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  105. K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    ADS  Google Scholar 

  106. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [INSPIRE].

  107. IceCube collaboration, M. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].

    ADS  Google Scholar 

  108. N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  109. M. Carena, S. Heinemeyer, O. Stal, C. Wagner and G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle, Eur. Phys. J. C 73 (2013) 2552 [arXiv:1302.7033] [INSPIRE].

    ADS  Google Scholar 

  110. T. Han, T. Li, S. Su and L.-T. Wang, Non-decoupling MSSM Higgs sector and light superpartners, arXiv:1306.3229 [INSPIRE].

  111. A. Arbey, M. Battaglia and F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].

    ADS  Google Scholar 

  112. C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].

    ADS  Google Scholar 

  113. A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetry with light dark matter confronting the recent CDMS and LHC results, arXiv:1308.2153 [INSPIRE].

  114. G. Bélanger et al., LHC constraints on light neutralino dark matter in the MSSM, arXiv:1308.3735 [INSPIRE].

  115. K. Hagiwara, S. Mukhopadhyay and J. Nakamura, 10 GeV neutralino dark matter and light stau in the MSSM, arXiv:1308.6738 [INSPIRE].

  116. J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

    ADS  Google Scholar 

  117. E. Accomando, R.L. Arnowitt, B. Dutta and Y. Santoso, Neutralino proton cross-sections in supergravity models, Nucl. Phys. B 585 (2000) 124 [hep-ph/0001019] [INSPIRE].

    ADS  Google Scholar 

  118. G. Bélanger, F. Boudjema, A. Cottrant, R. Godbole and A. Semenov, The MSSM invisible Higgs in the light of dark matter and g − 2, Phys. Lett. B 519 (2001) 93 [hep-ph/0106275] [INSPIRE].

    ADS  Google Scholar 

  119. J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].

    ADS  Google Scholar 

  120. J. Edsjo, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].

    ADS  Google Scholar 

  121. J.R. Ellis, T. Falk and K.A. Olive, Neutralino-Stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].

    ADS  Google Scholar 

  122. J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413-414] [hep-ph/9905481] [INSPIRE].

  123. J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].

    ADS  Google Scholar 

  124. M. Carena, A. Freitas and C. Wagner, Light stop searches at the LHC in events with one hard photon or jet and missing energy, JHEP 10 (2008) 109 [arXiv:0808.2298] [INSPIRE].

    ADS  Google Scholar 

  125. A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  126. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  127. A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].

    ADS  Google Scholar 

  128. T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].

    ADS  Google Scholar 

  129. H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, arXiv:1308.0592 [INSPIRE].

  130. P. Salucci, F. Nesti, G. Gentile and C. Martins, The dark matter density at the Suns location, Astron. Astrophys. 523 (2010) A83 [arXiv:1003.3101] [INSPIRE].

    ADS  Google Scholar 

  131. M. Srednicki and R. Watkins, Coherent couplings of neutralinos to nuclei from squark mixing, Phys. Lett. B 225 (1989) 140 [INSPIRE].

    ADS  Google Scholar 

  132. G. Gelmini, P. Gondolo and E. Roulet, Neutralino dark matter searches, Nucl. Phys. B 351 (1991) 623 [INSPIRE].

    ADS  Google Scholar 

  133. M. Drees and M. M. Nojiri, Neutralino relic density in minimal n = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].

    ADS  Google Scholar 

  134. M. Drees and M.M. Nojiri, New contributions to coherent neutralino-nucleus scattering, Phys. Rev. D 47 (1993) 4226 [hep-ph/9210272] [INSPIRE].

    ADS  Google Scholar 

  135. M. Drees and M. Nojiri, Neutralino-nucleon scattering revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [INSPIRE].

    ADS  Google Scholar 

  136. J.R. Ellis, A. Ferstl and K.A. Olive, Reevaluation of the elastic scattering of supersymmetric dark matter, Phys. Lett. B 481 (2000) 304 [hep-ph/0001005] [INSPIRE].

    ADS  Google Scholar 

  137. CMS collaboration, Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-12-023 (2012).

  138. ATLAS collaboration, Multi-channel search for squarks and gluinos in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2362 [arXiv:1212.6149] [INSPIRE].

    ADS  Google Scholar 

  139. Y.G. Kim, T. Nihei, L. Roszkowski and R. Ruiz de Austri, Upper and lower limits on neutralino WIMP mass and spin independent scattering cross-section and impact of new (g − 2) μ measurement, JHEP 12 (2002) 034 [hep-ph/0208069] [INSPIRE].

    ADS  Google Scholar 

  140. V. Barger, W.-Y. Keung and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D 78 (2008) 056007 [arXiv:0806.1962] [INSPIRE].

    ADS  Google Scholar 

  141. H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev. D 71 (2005) 115007 [hep-ph/0412269] [INSPIRE].

    ADS  Google Scholar 

  142. Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].

    ADS  Google Scholar 

  143. G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Status of invisible Higgs decays, Phys. Lett. B 723 (2013) 340 [arXiv:1302.5694] [INSPIRE].

    ADS  Google Scholar 

  144. A. Blondel et al., Report of the ICFA beam dynamics workshopaccelerators for a Higgs factory: linear vs. circular(HF2012), arXiv:1302.3318 [INSPIRE].

  145. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Decays of H 0 /A 0 in supersymmetric scenarios with heavy sfermions, Eur. Phys. J. C 73 (2013) 2384 [arXiv:1211.0163] [INSPIRE].

    ADS  Google Scholar 

  146. B. Dutta et al., Top squark searches using dilepton invariant mass distributions and bino-higgsino dark matter at the LHC, Phys. Rev. D 87 (2013) 095007 [arXiv:1302.3231] [INSPIRE].

    ADS  Google Scholar 

  147. G. Steigman, B. Dasgupta and J.F. Beacom, Precise relic WIMP abundance and its impact on searches for dark matter annihilation, Phys. Rev. D 86 (2012) 023506 [arXiv:1204.3622] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu.

Additional information

ArXiv ePrint: 1303.3040

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, T., Liu, Z. & Natarajan, A. Dark matter and Higgs bosons in the MSSM. J. High Energ. Phys. 2013, 8 (2013). https://doi.org/10.1007/JHEP11(2013)008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)008

Keywords

Navigation