Skip to main content
Log in

Thermal Giant Gravitons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the giant graviton solution as the AdS5 × S 5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S 3 moving on the S 5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S 3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of motion, action and conserved charges for the thermal giant graviton we present a slight generalization of the blackfold formalism for charged black branes. Finally, we also briefly consider the thermal giant graviton moving in the AdS5 part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfold approach for higher-dimensional black holes, Acta Phys. Polon. B 40 (2009) 3459 [INSPIRE].

    MathSciNet  Google Scholar 

  5. R. Emparan, “Blackfolds,” arXiv:1106.2021 [hep-th] R. Emparan, Blackfolds, arXiv:1106.2021 [INSPIRE].

  6. J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [Erratum ibid. 1206 (2012) 155] [arXiv:1201.3506] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermodynamics of the hot BIon, Nucl. Phys. B 851 (2011) 462 [arXiv:1101.1297] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Thermal string probes in AdS and finite temperature Wilson loops, JHEP 06 (2012) 144 [arXiv:1201.4862] [INSPIRE].

    Article  ADS  Google Scholar 

  12. V. Niarchos and K. Siampos, M2-M5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP 11 (2008) 011 [arXiv:0806.1954] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Armas and N.A. Obers, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].

    ADS  Google Scholar 

  17. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5 (2002) 809[hep-th/0111222] [INSPIRE].

    MathSciNet  Google Scholar 

  21. V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M.M. Caldarelli and P.J. Silva, Multi-giant graviton systems, SUSY breaking and CFT, JHEP 02 (2004) 052 [hep-th/0401213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Bak, B. Chen and J.-B. Wu, Holographic correlation functions for open strings and branes, JHEP 06 (2011) 014 [arXiv:1103.2024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Armas, J. Camps, T. Harmark and N.A. Obers, The young modulus of black strings and the fine structure of blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. Carter, Essentials of classical brane dynamics, Int. J. Theor. Phys. 40 (2001) 2099 [gr-qc/0012036] [INSPIRE].

    Article  MATH  Google Scholar 

  28. J. Camps, R. Emparan, P. Figueras, S. Giusto and A. Saxena, Black rings in Taub-NUT and D0-D6 interactions, JHEP 02 (2009) 021 [arXiv:0811.2088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. G. Arcioni and E. Lozano-Tellechea, Stability and critical phenomena of black holes and black rings, Phys. Rev. D 72 (2005) 104021 [hep-th/0412118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.T. Liu, H. Lü, C. Pope and J.F. Vazquez-Poritz, Bubbling AdS black holes, JHEP 10 (2007) 030 [hep-th/0703184] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Buchel, Coarse-graining 1/2 BPS geometries of type IIB supergravity, Int. J. Mod. Phys. A 21 (2006) 3495 [hep-th/0409271] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].

    ADS  Google Scholar 

  35. S. Giombi, M. Kulaxizi, R. Ricci and D. Trancanelli, Half-BPS geometries and thermodynamics of free fermions, JHEP 01 (2007) 067 [hep-th/0512101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels A. Obers.

Additional information

ArXiv ePrint: 1207.2789

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armas, J., Harmark, T., Obers, N.A. et al. Thermal Giant Gravitons. J. High Energ. Phys. 2012, 123 (2012). https://doi.org/10.1007/JHEP11(2012)123

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)123

Keywords

Navigation