Skip to main content
Log in

Constraining nonstandard neutrino-electron interactions due to a new light spin-1 boson

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider nonstandard interactions of neutrinos with electrons arising from a new light spin-1 particle with mass of tens of GeV or lower and couplings to the neutrinos and electron. This boson is not necessarily a gauge boson and is assumed to have no mixing with standard-model gauge bosons. Adopting a model-independent approach, we study constraints on the flavor-conserving and -violating couplings of the boson with the leptons from a number of experimental data. Specifically, we take into account the (anti)neutrino-electron scattering and \( {e^{+}}{e^{-}}\to \nu \overline{\nu}\gamma \) measurements and keep explicitly the dependence on the new particle mass in all calculations. We find that one of the two sets of data can provide the stronger constraints, depending on the mass and width of the boson. Also, we evaluate complementary constraints on its separate flavor-conserving couplings to the electron and neutrinos from other latest experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  2. Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e + e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Barranco, O. Miranda, C. Moura and J. Valle, Constraining non-standard neutrino-electron interactions, Phys. Rev. D 77 (2008) 093014 [arXiv:0711.0698] [INSPIRE].

    ADS  Google Scholar 

  5. D. Forero and M. Guzzo, Constraining nonstandard neutrino interactions with electrons, Phys. Rev. D 84 (2011) 013002 [INSPIRE].

    ADS  Google Scholar 

  6. S. Gninenko and N. Krasnikov, The Muon anomalous magnetic moment and a new light gauge boson, Phys. Lett. B 513 (2001) 119 [hep-ph/0102222] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Boehm, Implications of a new light gauge boson for neutrino physics, Phys. Rev. D 70 (2004) 055007 [hep-ph/0405240] [INSPIRE].

    ADS  Google Scholar 

  8. A. Thomas, The Determination of sin2 θ W in Neutrino Scattering: no more anomaly, AIP Conf. Proc. 1418 (2011) 147 [arXiv:1111.0122] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Erler and P. Langacker, Electroweak model and constraints on new physics, in ref. [1].

  10. D. Hooper, Detecting MeV gauge bosons with high-energy neutrino telescopes, Phys. Rev. D 75 (2007) 123001 [hep-ph/0701194] [INSPIRE].

    ADS  Google Scholar 

  11. P. Fayet, U-boson production in e + e annihilations, psi and Upsilon decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

    ADS  Google Scholar 

  12. R. Foot, X. He, H. Lew and R. Volkas, Model for a light Z-prime boson, Phys. Rev. D 50 (1994) 4571 [hep-ph/9401250] [INSPIRE].

    ADS  Google Scholar 

  13. P.-f. Yin, J. Liu and S.-h. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679 (2009) 362 [arXiv:0904.4644] [INSPIRE].

  14. X.-G. He, J. Tandean and G. Valencia, Implications of a new particle from the hyperCP data on Σ+ + μ , Phys. Lett. B 631 (2005) 100 [hep-ph/0509041] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C.-H. Chen, C.-Q. Geng and C.-W. Kao, U-boson and the HyperCP exotic events, Phys. Lett. B 663 (2008) 400 [arXiv:0708.0937] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Oh and J. Tandean, Rare B Decays with a HyperCP Particle of Spin One, JHEP 01 (2010) 022 [arXiv:0910.2969] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Oh and J. Tandean, Anomalous CP-Violation in \( {B_s}-{{\overline{B}}_s} \) Mixing Due to a Light Spin-One Particle, Phys. Lett. B 697 (2011) 41 [arXiv:1008.2153] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [INSPIRE].

    ADS  Google Scholar 

  19. D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. Lett. 105 (2010) 081801 [arXiv:1007.0395] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    ADS  Google Scholar 

  21. S. Oh and J. Tandean, Constraints on a New Light Spin-One Particle from Rare b -¿ s Transitions, Phys. Rev. D 83 (2011) 095006 [arXiv:1102.1680] [INSPIRE].

    ADS  Google Scholar 

  22. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Nakamura and S.T. Petcov, Neutrino mass, mixing, and oscillations, in ref. [1].

  24. R. Allen et al., Study of electron-neutrino electron elastic scattering at LAMPF, Phys. Rev. D 47 (1993) 11 [INSPIRE].

    ADS  Google Scholar 

  25. LSND collaboration, L. Auerbach et al., Measurement of electron - neutrino - electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].

    ADS  Google Scholar 

  26. F. Reines, H. Gurr and H. Sobel, Detection of anti-electron-neutrino e Scattering, Phys. Rev. Lett. 37 (1976) 315 [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Vidyakin et al., Limitations on the magnetic moment and charge radius of the electron-anti-neutrino, JETP Lett. 55 (1992) 206 [INSPIRE].

    ADS  Google Scholar 

  28. A.I. Derbin et al., Limitations on the magnetic moment and charge radius of the electron-anti-neutrino, JETP Lett. 57 (1993) 796 [Pisma Zh. Eksp. Teor. Fiz. 57 (1993) 755].

  29. MUNU collaboration, Z. Daraktchieva et al., Limits on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B 564 (2003) 190 [hep-ex/0304011] [INSPIRE].

    Article  ADS  Google Scholar 

  30. MUNU collaboration, Z. Daraktchieva et al., Final results on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B 615 (2005) 153 [hep-ex/0502037] [INSPIRE].

    Article  ADS  Google Scholar 

  31. TEXONO collaboration, M. Deniz et al., Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].

    ADS  Google Scholar 

  32. R. Beyer and G. Radel, Neutral current coupling constants from neutrino electron scattering, Prog. Part. Nucl. Phys. 32 (1994) 399 [INSPIRE].

    Article  ADS  Google Scholar 

  33. CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. Boehm and P. Vogel, Physics of Massive Neutrinos, Cambridge University Press, Cambridge U.K. (1987).

    Google Scholar 

  35. G. ’t Hooft, Predictions for neutrino - electron cross-sections in Weinbergs model of weak interactions, Phys. Lett. B 37 (1971) 195 [INSPIRE].

  36. B. Kayser, E. Fischbach, S.P. Rosen and H. Spivack, Charged and Neutral Current Interference in ν e e Scattering, Phys. Rev. D 20 (1979) 87 [INSPIRE].

    ADS  Google Scholar 

  37. ALEPH collaboration, D. Buskulic et al., A Study of single and multi-photon production in e + e collisions at center-of-mass energies of 130 GeV and 136 GeV, Phys. Lett. B 384 (1996) 333 [INSPIRE].

    Article  ADS  Google Scholar 

  38. ALEPH collaboration, R. Barate et al., Searches for supersymmetry in the photon(s) plus missing energy channels at \( \sqrt{s}=161 \) GeV and 172 GeV, Phys. Lett. B 420 (1998) 127 [hep-ex/9710009] [INSPIRE].

    Article  ADS  Google Scholar 

  39. ALEPH collaboration, R. Barate et al., Single photon and multiphoton production in e + e collisions at a center-of-mass energy of 183-GeV, Phys. Lett. B 429 (1998) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  40. ALEPH collaboration, A. Heister et al., Single photon and multiphoton production in e + e collisions at \( \sqrt{s} \) up to 209 GeV, Eur. Phys. J. C 28 (2003) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  41. DELPHI collaboration, P. Abreu et al., Photon events with missing energy at \( \sqrt{s}=183 \) GeV to 189 GeV, Eur. Phys. J. C 17 (2000) 53 [hep-ex/0103044] [INSPIRE].

    Article  ADS  Google Scholar 

  42. DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].

    ADS  Google Scholar 

  43. L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at 161 GeV < \( \sqrt{s} \) < 172 GeV, Phys. Lett. B 415 (1997) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  44. L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at \( \sqrt{s}=183 \) GeV, Phys. Lett. B 444 (1998) 503 [INSPIRE].

    Article  ADS  Google Scholar 

  45. L3 collaboration, M. Acciarri et al., Single and multiphoton events with missing energy in e + e collisions at \( \sqrt{S}\hbox{-}189 \) GeV, Phys. Lett. B 470 (1999) 268 [hep-ex/9910009] [INSPIRE].

    Article  ADS  Google Scholar 

  46. OPAL collaboration, K. Ackerstaff et al., Search for anomalous production of photonic events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV to 172 GeV, Eur. Phys. J. C 2 (1998) 607 [hep-ex/9801024] [INSPIRE].

    Article  ADS  Google Scholar 

  47. OPAL collaboration, G. Abbiendi et al., Search for anomalous photonic events with missing energy in e + e collisions at \( \sqrt{s}=130 \) GeV, 136 GeV and 183 GeV, Eur. Phys. J. C 8 (1999) 23 [hep-ex/9810021] [INSPIRE].

    Article  ADS  Google Scholar 

  48. OPAL collaboration, G. Abbiendi et al., Photonic events with missing energy in e + e collisions at \( \sqrt{s}=189 \) GeV, Eur. Phys. J. C 18 (2000) 253 [hep-ex/0005002] [INSPIRE].

    ADS  Google Scholar 

  49. E. Ma and J. Okada, How Many Neutrinos?, Phys. Rev. Lett. 41 (1978) 287 [Erratum ibid. 41 (1978) 1759] [INSPIRE].

  50. K. Gaemers, R. Gastmans and F. Renard, Neutrino Counting in e + e Collisions, Phys. Rev. D 19 (1979) 1605 [INSPIRE].

    ADS  Google Scholar 

  51. F.A. Berends, G. Burgers, C. Mana, M. Martinez and W. van Neerven, Radiative Corrections to the Process e + e Neutrino Anti-neutrino γ, Nucl. Phys. B 301 (1988) 583 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S. Godfrey, P. Kalyniak, B. Kamal and A. Leike, Discovery and identification of extra gauge bosons in e + e neutrino anti-neutrino gamma, Phys. Rev. D 61 (2000) 113009 [hep-ph/0001074] [INSPIRE].

    ADS  Google Scholar 

  53. T. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].

    ADS  Google Scholar 

  54. M. Williams, C. Burgess, A. Maharana and F. Quevedo, New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range, JHEP 08 (2011) 106 [arXiv:1103.4556] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C.-W. Chiang, Y.-F. Lin and J. Tandean, Probing Leptonic Interactions of a Family-Nonuniversal ZBoson, JHEP 11 (2011) 083 [arXiv:1108.3969] [INSPIRE].

    Article  ADS  Google Scholar 

  56. C.D. Carone and H. Murayama, Possible light U(1) gauge boson coupled to baryon number, Phys. Rev. Lett. 74 (1995) 3122 [hep-ph/9411256] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

    ADS  Google Scholar 

  58. E. Ma and D. Roy, Phenomenology of the B - 3L(τ) gauge boson, Phys. Rev. D 58 (1998) 095005 [hep-ph/9806210] [INSPIRE].

    ADS  Google Scholar 

  59. J.P. Leveille, The Second Order Weak Correction to (G-2) of the Muon in Arbitrary Gauge Models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  60. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A1 collaboration, H. Merkel et al., Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].

    Article  ADS  Google Scholar 

  62. APEX collaboration, S. Abrahamyan et al., Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].

    ADS  Google Scholar 

  64. S. Andreas, C. Niebuhr and A. Ringwald, New Limits on Hidden Photons from Past Electron Beam Dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].

    ADS  Google Scholar 

  65. M. Freytsis, G. Ovanesyan and J. Thaler, Dark Force Detection in Low Energy e-p Collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [INSPIRE].

    Article  ADS  Google Scholar 

  66. ALEPH collaboration, D. Buskulic et al., Study of the four fermion final state at the Z resonance, Z. Phys. C 66 (1995) 3 [INSPIRE].

    ADS  Google Scholar 

  67. A. Pukhov et al., CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  68. J.N. Bahcall, Neutrino Opacity 1. Neutrino-Lepton Scattering, Phys. Rev. 136 (1964) B1164.

    Article  ADS  Google Scholar 

  69. X.-G. He, J. Tandean and G. Valencia, Penguin and Box Diagrams in Unitary Gauge, Eur. Phys. J. C 64 (2009) 681 [arXiv:0909.3638] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. M. Hirsch, E. Nardi and D. Restrepo, Bounds on the tau and muon neutrino vector and axial vector charge radius, Phys. Rev. D 67 (2003) 033005 [hep-ph/0210137] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jusak Tandean.

Additional information

ArXiv ePrint: 1204.6296

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CW., Faisel, G., Lin, YF. et al. Constraining nonstandard neutrino-electron interactions due to a new light spin-1 boson. J. High Energ. Phys. 2013, 150 (2013). https://doi.org/10.1007/JHEP10(2013)150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)150

Keywords

Navigation