Skip to main content
Log in

Non-equilibrium dynamics of O(N) nonlinear sigma models: a large-N approach

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the time evolution of the mass gap of the O(N) non-linear sigma model in 2 + 1 dimensions due to a time-dependent coupling in the large-N limit. Using the Schwinger-Keldysh approach, we derive a set of equations at large N which determine the time-dependent gap in terms of the coupling. These equations lead to a criterion for the breakdown of adiabaticity for slow variation of the coupling leading to a Kibble-Zurek scaling law. We describe a self-consistent numerical procedure to solve these large-N equations and provide explicit numerical solutions for a coupling which asymptotes to constant values in the gapped phase and approaches the zero temperature equilibrium critical point in a linear fashion. We demonstrate that for such a protocol there is a value of the coupling \( g = g_c^{{dyn}} > {g_c} \) where the gap function vanishes, possibly indicating a dynamical instability. We study the dependence of \( g_c^{{dyn}} \) on both the rate of change of the coupling and the initial temperature. We also verify, by studying the evolution of the mass gap subsequent to a sudden change in g, that the model does not display thermalization within a finite time interval t 0 and discuss the implications of this observation for its conjectured gravitational dual as a higher spin theory in AdS 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982).

    Book  MATH  Google Scholar 

  2. S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. C.-S. Chu and P.-M. Ho, Time-dependent AdS/CFT duality and null singularity, JHEP 04 (2006) 013 [hep-th/0602054] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. S.R. Das, Gauge-gravity duality and string cosmology, in String cosmology, J. Erdmenger ed., (2009), pg. 231 [INSPIRE].

  5. S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, Chapter 2 in Quantum quenching, annealing and computation, A. Das, A. Chandra and B.K. Chakrabarti eds., Lect. Notes Phys. 802 (2010) 21 [arXiv:0908.2922].

  6. J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59 (2010) 1063 [arXiv:0912.4034].

    Article  ADS  Google Scholar 

  7. A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].

    Article  ADS  Google Scholar 

  8. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [INSPIRE].

  9. P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. (2007) P06008 [arXiv:0704.1880] [INSPIRE].

  11. S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P11003 [arXiv:0808.0116].

  12. S. Sotiriadis, P. Calabrese and J. Cardy, Quantum quench from a thermal initial state, Eur. Phys. Lett. 87 (2009) 20002 [arXiv:0903.0895].

    Article  ADS  Google Scholar 

  13. S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: a self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].

    ADS  Google Scholar 

  14. A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B 72 (2005) 161201 [cond-mat/0312144].

    ADS  Google Scholar 

  15. V. Gritsev and A. Polkovnikov, Universal dynamics near quantum critical points, arXiv:0910.3692 [INSPIRE].

  16. K. Sengupta, D. Sen and S. Mondal, Exact results for quench dynamics and defect production in a two-dimensional model, Phys. Rev. Lett. 100 (2008) 077204 [arXiv:0710.1712].

    Article  ADS  Google Scholar 

  17. D. Sen, K. Sengupta and S. Mondal, Defect production in nonlinear quench across a quantum critical point, Phys. Rev. Lett. 101 (2008) 016806 [arXiv:0803.2081].

    Article  ADS  Google Scholar 

  18. D. Patanè, A. Silva, L. Amico, R. Fazio and G.E. Santoro, Adiabatic dynamics of a quantum critical system coupled to an environment: Scaling and kinetic equation approaches, Phys. Rev. B 80 (2009) 024302 [arXiv:0812.3685].

    ADS  Google Scholar 

  19. T. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].

    ADS  Google Scholar 

  20. W. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge U.K. (1999).

    Google Scholar 

  22. A. Kamenev and A. Levchenko, Keldysh technique and non-linear sigma-model: basic principles and applications, Adv. Phys. 58 (2009) 197 [arXiv:0901.3586].

    Article  ADS  Google Scholar 

  23. G. Festuccia and H. Liu, The arrow of time, black holes and quantum mixing of large-N Yang-Mills theories, JHEP 12 (2007) 027 [hep-th/0611098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. N. Iizuka and J. Polchinski, A matrix model for black hole thermalization, JHEP 10 (2008) 028 [arXiv:0801.3657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  26. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  28. R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].

    Article  ADS  Google Scholar 

  30. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

    ADS  Google Scholar 

  32. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].

    Article  ADS  Google Scholar 

  35. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev. D 68 (2003) 044011 [hep-th/0304093] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  39. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  41. R.A. Barankov, L.S. Levitov and B.Z. Spivak, Collective Rabi oscillations and solitons in a time-dependent BCS pairing problem, Phys. Rev. Lett. 93 (2004) 160401 [cond-mat/0312053].

    Article  ADS  Google Scholar 

  42. G.M. Eliashberg, Film superconductivity stimulated by a high-frequency field, JETP Lett. 11 (1970) 114 [Zh. Eksp. Teor. Fiz. Pisma Red. 11 (1970) 186].

  43. N. Bao, X. Dong, E. Silverstein and G. Torroba, Stimulated superconductivity at strong coupling, JHEP 10 (2011) 123 [arXiv:1104.4098] [INSPIRE].

    Article  ADS  Google Scholar 

  44. E. Brézin and V. Kazakov, Exactly solvable field theories of closed strings, Phys. Lett. B 236 (1990) 144 [INSPIRE].

    ADS  Google Scholar 

  45. D.J. Gross and N. Miljkovic, A nonperturbative solution of D = 1 string theory, Phys. Lett. B 238 (1990) 217 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. P.H. Ginsparg and J. Zinn-Justin, 2D gravity + 1D matter, Phys. Lett. B 240 (1990) 333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. S.R. Das and A. Jevicki, String field theory and physical interpretation of D = 1 strings, Mod. Phys. Lett. A 5 (1990) 1639 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, Phys. Rev. D 85 (2012) 086005 [arXiv:1105.4011] [INSPIRE].

    ADS  Google Scholar 

  49. S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, arXiv:1109.3519 [INSPIRE].

  50. P.V. Buividovich, On the dynamics of large-N O(N)-symmetric quantum systems at finite temperature, arXiv:0903.4263.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.R., Sengupta, K. Non-equilibrium dynamics of O(N) nonlinear sigma models: a large-N approach. J. High Energ. Phys. 2012, 72 (2012). https://doi.org/10.1007/JHEP09(2012)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)072

Keywords

Navigation