Skip to main content
Log in

Precision gauge unification from extra Yukawa couplings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the impact of extra vector-like GUT multiplets on the predicted value of the strong coupling. We find in particular that Yukawa couplings between such extra multiplets and the MSSM Higgs doublets can resolve the familiar two-loop discrepancy between the SUSY GUT prediction and the measured value of α 3. Our analysis highlights the advantages of the holomorphic scheme, where the perturbative running of gauge couplings is saturated at one loop and further corrections are conveniently described in terms of wavefunction renormalization factors. If the gauge couplings as well as the extra Yukawas are of \( \mathcal{O}(1) \) at the unification scale, the relevant two-loop correction can be obtained analytically. However, the effect persists also in the weakly-coupled domain, where possible non-perturbative corrections at the GUT scale are under better control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [SPIRES].

    ADS  Google Scholar 

  2. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602 [hep-ph/0511035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string. II, Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [SPIRES].

    ADS  Google Scholar 

  4. O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [SPIRES].

    ADS  Google Scholar 

  5. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory-I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory-II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [SPIRES].

  9. C. Adam et al., Measuring Unification, arXiv:1007.2190 [SPIRES].

  10. S. Raby, M. Ratz and K. Schmidt-Hoberg, Precision gauge unification in the MSSM, Phys. Lett. B 687 (2010) 342 [arXiv:0911.4249] [SPIRES].

    ADS  Google Scholar 

  11. G. Amelino-Camelia, D. Ghilencea and G.G. Ross, The effect of Yukawa couplings on unification predictions and the non-perturbative limit, Nucl. Phys. B 528 (1998) 35 [hep-ph/9804437] [SPIRES].

    ADS  Google Scholar 

  12. T. Moroi and Y. Okada, Radiative corrections to Higgs masses in the supersymmetric model with an extra family and antifamily, Mod. Phys. Lett. A 7 (1992) 187 [SPIRES].

    ADS  Google Scholar 

  13. T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric Standard Models, Phys. Lett. B 295 (1992) 73 [SPIRES].

    ADS  Google Scholar 

  14. K. Tobe and J.D. Wells, Higgs boson mass limits in perturbative unification theories, Phys. Rev. D 66 (2002) 013010 [hep-ph/0204196] [SPIRES].

    ADS  Google Scholar 

  15. K.S. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [SPIRES].

  16. K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs Boson Mass, Sparticle Spectrum and Little Hierarchy Problem in Extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [SPIRES].

    ADS  Google Scholar 

  17. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [SPIRES].

    ADS  Google Scholar 

  18. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A Little Solution to the Little Hierarchy Problem: A Vector-like Generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020] [SPIRES].

    ADS  Google Scholar 

  19. S.P. Martin, Raising the Higgs mass with Yukawa couplings for isotriplets in vector-like extensions of minimal supersymmetry, arXiv:1006.4186 [SPIRES].

  20. J. Jiang, T. Li and D.V. Nanopoulos, Testable Flipped SU(5) × U(1) X Models, Nucl. Phys. B 772 (2007) 49 [arXiv:0610054].

    ADS  Google Scholar 

  21. R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [SPIRES].

    ADS  Google Scholar 

  22. T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric Standard Models, Phys. Lett. B 295 (1992) 73 [SPIRES].

    ADS  Google Scholar 

  23. K. Tobe and J.D. Wells, Higgs boson mass limits in perturbative unification theories, Phys. Rev. D 66 (2002) 013010 [hep-ph/0204196] [SPIRES].

    ADS  Google Scholar 

  24. D. Ghilencea, M. Lanzagorta and G.G. Ross, Unification predictions, Nucl. Phys. B 511 (1998) 3 [hep-ph/9707401] [SPIRES].

    ADS  Google Scholar 

  25. D. Ghilencea, M. Lanzagorta and G.G. Ross, Strong unification, Phys. Lett. B 415 (1997) 253 [hep-ph/9707462] [SPIRES].

    ADS  Google Scholar 

  26. J.L. Jones, Gauge Coupling Unification in MSSM + 5 Flavors, Phys. Rev. D 79 (2009) 075009 [arXiv:0812.2106] [SPIRES].

    ADS  Google Scholar 

  27. J. Kopp, M. Lindner, V. Niro and T.E.J. Underwood, On the Consistency of Perturbativity and Gauge Coupling Unification, Phys. Rev. D 81 (2010) 025008 [arXiv:0909.2653] [SPIRES].

    ADS  Google Scholar 

  28. R. Sato, T.T. Yanagida and K. Yonekura, Relaxing a constraint on the number of messengers in a low-scale gauge mediation, Phys. Rev. D 81 (2010) 045003 [arXiv:0910.3790] [SPIRES].

    ADS  Google Scholar 

  29. S. Abel and V.V. Khoze, Direct Mediation, Duality and Unification, JHEP 11 (2008) 024 [arXiv:0809.5262] [SPIRES].

    ADS  Google Scholar 

  30. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [SPIRES].

    ADS  Google Scholar 

  31. M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [SPIRES].

    ADS  Google Scholar 

  32. M.A. Shifman and A.I. Vainshtein, On holomorphic dependence and infrared effects in supersymmetric gauge theories, Nucl. Phys. B 359 (1991) 571 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. M.A. Shifman, Little Miracles of Supersymmetric Evolution of Gauge Couplings, Int. J. Mod. Phys. A 11 (1996) 5761 [hep-ph/9606281] [SPIRES].

    ADS  Google Scholar 

  34. N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. N. Arkani-Hamed and H. Murayama, Renormalization group invariance of exact results in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 6638 [hep-th/9705189] [SPIRES].

    ADS  Google Scholar 

  36. I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [SPIRES].

    ADS  Google Scholar 

  37. I. Jack, D.R.T. Jones and A. Pickering, The connection between the DRED and NSVZ renormalisation schemes, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. L. Calibbi, L. Ferretti, A. Romanino and R. Ziegler, Gauge coupling unification, the GUT scale and magic fields, Phys. Lett. B 672 (2009) 152 [arXiv:0812.0342] [SPIRES].

    ADS  Google Scholar 

  39. M.S. Chanowitz, Bounding CKM Mixing with a Fourth Family, Phys. Rev. D 79 (2009) 113008 [arXiv:0904.3570] [SPIRES].

    ADS  Google Scholar 

  40. M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, How much space is left for a new family of fermions?, Phys. Rev. D 79 (2009) 113006 [arXiv:0902.4883] [SPIRES].

    ADS  Google Scholar 

  41. B. Pendleton and G.G. Ross, Mass and Mixing Angle Predictions from Infrared Fixed Points, Phys. Lett. B 98 (1981) 291 [SPIRES].

    ADS  Google Scholar 

  42. A. Aranda, J.L. Diaz-Cruz and A.D. Rojas, Anomalies, β-functions and Supersymmetric Unification with Multi-Dimensional Higgs Representations, Phys. Rev. D 80 (2009) 085027 [arXiv:0907.4552] [SPIRES].

    ADS  Google Scholar 

  43. P. Langacker and N. Polonsky, The Strong coupling, unification and recent data, Phys. Rev. D 52 (1995) 3081 [hep-ph/9503214] [SPIRES].

    ADS  Google Scholar 

  44. P. Langacker and N. Polonsky, Uncertainties in coupling constant unification, Phys. Rev. D 47 (1993) 4028 [hep-ph/9210235] [SPIRES].

    ADS  Google Scholar 

  45. M.S. Carena, S. Pokorski and C.E.M. Wagner, On the unification of couplings in the minimal supersymmetric Standard Model, Nucl. Phys. B 406 (1993) 59 [hep-ph/9303202] [SPIRES].

    ADS  Google Scholar 

  46. J. Bagger, K.T. Matchev and D. Pierce, Precision corrections to supersymmetric unification, Phys. Lett. B 348 (1995) 443 [hep-ph/9501277] [SPIRES].

    ADS  Google Scholar 

  47. L. Roszkowski and M.A. Shifman, Reconciling supersymmetric grand unification with α s (m Z ) ≅ 0.11, Phys. Rev. D 53 (1996) 404 [hep-ph/9503358] [SPIRES].

    ADS  Google Scholar 

  48. S. Raby, Grand Unified Theories, published in Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  49. D. Ring, S. Urano and R.L. Arnowitt, Planck scale physics and the testability of SU(5) supergravity GUT, Phys. Rev. D 52 (1995) 6623 [hep-ph/9501247] [SPIRES].

    ADS  Google Scholar 

  50. P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. B. Dutta, Y. Mimura and R.N. Mohapatra, Proton Decay and Flavor Violating Thresholds in SO(10) Models, Phys. Rev. Lett. 100 (2008) 181801 [arXiv:0712.1206] [SPIRES].

    ADS  Google Scholar 

  52. G.G. Ross, Wilson line breaking and gauge coupling unification, hep-ph/0411057 [SPIRES].

  53. G. Parisi, On the Value of Fundamental Constants, Phys. Rev. D 11 (1975) 909 [SPIRES].

  54. M. Blaszczyk et al., A Z2xZ2 standard model, Phys. Lett. B 683 (2010) 340 [arXiv:0911.4905] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. M. Blaszczyk, S.G. Nibbelink, F. Ruehle, M. Trapletti and P.K.S. Vaudrevange, Heterotic MSSM on a Resolved Orbifold, arXiv:1007.0203 [SPIRES].

  56. H.P. Nilles, The role of classical symmetries in the low-energy limit of superstring theories, Phys. Lett. B 180 (1986) 240 [SPIRES].

    ADS  Google Scholar 

  57. L.J. Dixon, V. Kaplunovsky and J. Louis, On Effective Field Theories Describing (2,2) Vacua of the Heterotic String, Nucl. Phys. B 329 (1990) 27 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. I. Antoniadis, K.S. Narain and T.R. Taylor, Higher genus string corrections to gauge couplings, Phys. Lett. B 267 (1991) 37 [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  59. R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [SPIRES].

  60. R. Blumenhagen, Gauge Coupling Unification in F-theory Grand Unified Theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. J.J. Heckman and C. Vafa, An Exceptional Sector for F-theory GUTs, arXiv:1006.5459 [SPIRES].

  62. E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [SPIRES].

    ADS  Google Scholar 

  63. J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1) X Models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. T. Li, D.V. Nanopoulos and J.W. Walker, Elements of F-ast Proton Decay, arXiv:1003.2570 [SPIRES].

  65. I. Gogoladze, B. He and Q. Shafi, New Fermions at the LHC and Mass of the Higgs Boson, Phys. Lett. B 690 (2010) 495 [arXiv:1004.4217] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Hebecker.

Additional information

ArXiv ePrint: 1007.3990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donkin, I., Hebecker, A. Precision gauge unification from extra Yukawa couplings. J. High Energ. Phys. 2010, 44 (2010). https://doi.org/10.1007/JHEP09(2010)044

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)044

Keywords

Navigation