Skip to main content
Log in

Level spacings for weakly asymmetric real random matrices and application to two-color QCD with chemical potential

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider antisymmetric perturbations of real symmetric matrices in the context of random matrix theory and two-color quantum chromodynamics. We investigate the level spacing distributions of eigenvalues that remain real or become complex conjugate pairs under the perturbation. We work out analytical surmises from small matrices and show that they describe the level spacings of large random matrices. As expected from symmetry arguments, these level spacings also apply to the overlap Dirac operator for two-color QCD with chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Mehta, Random matrices, 3rd edition, Academic Press, U.S.A. (2004).

    MATH  Google Scholar 

  2. C. Porter, Statistical theories of spectra: fluctuations, Academic Press, U.S.A. (1965).

    MATH  Google Scholar 

  3. J. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. Osborn, D. Toublan and J. Verbaarschot, From chiral random matrix theory to chiral perturbation theory, Nucl. Phys. B 540 (1999) 317 [hep-th/9806110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D. Toublan and J. Verbaarschot, Effective low-energy theories and QCD Dirac spectra, Int. J. Mod. Phys. B 15 (2001) 1404 [hep-th/0001110] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. Basile and G. Akemann, Equivalence of QCD in the ϵ-regime and chiral random matrix theory with or without chemical potential, JHEP 12 (2007) 043 [arXiv:0710.0376] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Fox and P. B. Kahn, Higher order spacing distributions for a class of unitary ensembles, Phys. Rev. B 134 (1964) 1151.

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials, J. Phys. Soc. Jpn. 60 (1991) 3298.

    Article  MathSciNet  ADS  Google Scholar 

  9. T. Nagao and M. Wadati, Correlation functions of random matrix ensembles related to classical orthogonal polynomials. II, J. Phys. Soc. Jpn. 61 (1992) 78.

    Article  MathSciNet  ADS  Google Scholar 

  10. A.M. Halasz and J. Verbaarschot, Universal fluctuations in spectra of the lattice Dirac operator, Phys. Rev. Lett. 74 (1995) 3920 [hep-lat/9501025] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Pullirsch, K. Rabitsch, T. Wettig and H. Markum, Evidence for quantum chaos in the plasma phase of QCD, Phys. Lett. B 427 (1998) 119 [hep-ph/9803285] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Lenz and F. Haake, Reliability of small matrices for large spectra with nonuniversal fluctuations, Phys. Rev. Lett. 67 (1991) 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. S. Schierenberg, F. Bruckmann and T. Wettig, Wigner surmise for mixed symmetry classes in random matrix theory, Phys. Rev. E 85 (2012) 061130 [arXiv:1202.3925] [INSPIRE].

    ADS  Google Scholar 

  14. A.M. Garcia-Garcia and J.C. Osborn, Chiral phase transition in lattice QCD as a metal-insulator transition, Phys. Rev. D 75 (2007) 034503 [hep-lat/0611019] [INSPIRE].

    ADS  Google Scholar 

  15. T.G. Kovacs, Absence of correlations in the QCD Dirac spectrum at high temperature, Phys. Rev. Lett. 104 (2010) 031601 [arXiv:0906.5373] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T.G. Kovacs and F. Pittler, Anderson localization in quark-gluon plasma, Phys. Rev. Lett. 105 (2010) 192001 [arXiv:1006.1205] [INSPIRE].

    Article  ADS  Google Scholar 

  17. F. Bruckmann, T.G. Kovacs and S. Schierenberg, Anderson localization through Polyakov loops: lattice evidence and random matrix model, Phys. Rev. D 84 (2011) 034505 [arXiv:1105.5336] [INSPIRE].

    ADS  Google Scholar 

  18. UKQCD and HPQCD collaboration, E. Follana, C. T. Davies and A. Hart, Improved staggered eigenvalues and epsilon regime universality in SU(2), PoS(LAT2006)051 [INSPIRE].

  19. F. Bruckmann, S. Keppeler, M. Panero and T. Wettig, Polyakov loops and spectral properties of the staggered Dirac operator, Phys. Rev. D 78 (2008) 034503 [arXiv:0804.3929] [INSPIRE].

    ADS  Google Scholar 

  20. J. Ginibre, Statistical ensembles of complex, quaternion and real matrices, J. Math. Phys. 6 (1965) 440 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Grobe, F. Haake and H.-J. Sommers, Quantum distinction of regular and chaotic dissipative motion, Phys. Rev. Lett. 61 (1988) 1899 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Akemann, E. Bittner, M. Phillips and L. Shifrin, A Wigner surmise for hermitian and non-hermitian chiral random matrices, Phys. Rev. E 80 (2009) 065201 [arXiv:0907.4195] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. H. Markum, R. Pullirsch and T. Wettig, Non-Hermitian random matrix theory and lattice QCD with chemical potential, Phys. Rev. Lett. 83 (1999) 484 [hep-lat/9906020] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.A. Stephanov, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76 (1996) 4472 [hep-lat/9604003] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93 (2004) 222001 [hep-th/0403131] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Splittorff and J. Verbaarschot, Factorization of correlation functions and the replica limit of the Toda lattice equation, Nucl. Phys. B 683 (2004) 467 [hep-th/0310271] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Akemann, J. Osborn, K. Splittorff and J. Verbaarschot, Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential, Nucl. Phys. B 712 (2005) 287 [hep-th/0411030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Akemann, J. Bloch, L. Shifrin and T. Wettig, Individual complex Dirac eigenvalue distributions from random matrix theory and lattice QCD at nonzero chemical potential, Phys. Rev. Lett. 100 (2008) 032002 [arXiv:0710.2865] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Bloch and T. Wettig, Overlap Dirac operator at nonzero chemical potential and random matrix theory, Phys. Rev. Lett. 97 (2006) 012003 [hep-lat/0604020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. N. Lehmann and H.J. Sommers, Eigenvalue statistics of random real matrices, Phys. Rev. Lett. 67 (1991) 941.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. G. Akemann, M. Phillips and H.-J. Sommers, The chiral gaussian two-matrix ensemble of real asymmetric matrices, J. Phys. A 43 (2010) 085211 [arXiv:0911.1276] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. P.J. Forrester and T. Nagao, Eigenvalue statistics of the real Ginibre ensemble, Phys. Rev. Lett. 99 (2007) 050603 [arXiv:0706.2020].

    Article  ADS  Google Scholar 

  33. H.-J. Sommers and W. Wieczorek, General eigenvalue correlations for the real Ginibre ensemble, J. Phys. A 41 (2008) 405003 [arXiv:0806.2756].

    MathSciNet  Google Scholar 

  34. A. Borodin and C. Sinclair, The Ginibre ensemble of real random matrices and its scaling limits, Comm. Math. Phys. 291 (2009) 177 [arXiv:0805.2986].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. P.J. Forrester and T. Nagao, Skew orthogonal polynomials and the partly symmetric real Ginibre ensemble, J. Phys. A 41 (2008) 375003 [arXiv:0806.0055].

    MathSciNet  Google Scholar 

  36. G. Akemann, M. Kieburg and M. Phillips, Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices, J. Phys. A 43 (2010) 375207 [arXiv:1005.2983] [INSPIRE].

    MathSciNet  Google Scholar 

  37. G. Akemann, T. Kanazawa, M. Phillips and T. Wettig, Random matrix theory of unquenched two-colour QCD with nonzero chemical potential, JHEP 03 (2011) 066 [arXiv:1012.4461] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Gottfried and T.M. Yan, Quantum mechanics: fundamentals, 2nd edition, Springer, U.S.A. (2004).

    MATH  Google Scholar 

  39. R. Narayanan and H. Neuberger, Chiral determinant as an overlap of two vacua, Nucl. Phys. B 412 (1994) 574 [hep-lat/9307006] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Narayanan and H. Neuberger, A construction of lattice chiral gauge theories, Nucl. Phys. B 443 (1995) 305 [hep-th/9411108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141 [hep-lat/9707022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Hasenfratz and F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125 (1983) 308 [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Golub and C.V. Loan, Matrix computations, John Hopkins University Press, Baltimore, U.S.A. (1989).

    MATH  Google Scholar 

  44. J. Bloch and T. Wettig, Domain-wall and overlap fermions at nonzero quark chemical potential, Phys. Rev. D 76 (2007) 114511 [arXiv:0709.4630] [INSPIRE].

    ADS  Google Scholar 

  45. P.H. Ginsparg and K.G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D 25 (1982) 2649 [INSPIRE].

    ADS  Google Scholar 

  46. H. Neuberger, Vector-like gauge theories with almost massless fermions on the lattice, Phys. Rev. D 57 (1998) 5417 [hep-lat/9710089] [INSPIRE].

    ADS  Google Scholar 

  47. USQCD, http://usqcd.jlab.org/usqcd-software/.

  48. J. Bloch and S. Heybrock, A nested Krylov subspace method to compute the sign function of large complex matrices, Comput. Phys. Commun. 182 (2011) 878 [arXiv:0912.4457] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. ARPACK, http://www.caam.rice.edu/software/ARPACK/.

  50. http://arxiv.org/src/1204.6259/anc/animation.avi.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bloch.

Additional information

ArXiv ePrint: 1204.6259

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(AVI 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, J., Bruckmann, F., Meyer, N. et al. Level spacings for weakly asymmetric real random matrices and application to two-color QCD with chemical potential. J. High Energ. Phys. 2012, 66 (2012). https://doi.org/10.1007/JHEP08(2012)066

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)066

Keywords

Navigation