Skip to main content
Log in

Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2) × U(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Semenoff, Condensed matter simulation of a three-dimensional anomaly, Phys. Rev. Lett. 53 (1984) 2449 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. K.S. Novoselov et al. , Electric field effect in atomically thin carbon films, Science 306 (2004) 666.

    Article  ADS  Google Scholar 

  3. K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197 [cond-mat/0509330] [SPIRES].

    Article  ADS  Google Scholar 

  4. K. S. Novoselov et al., Two-dimensional atomic crystals, PNAS 102 (2005) 10451.

    Article  ADS  Google Scholar 

  5. A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183.

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, Graphene: mind the gap, Nat. Mater. 6 (2007) 720.

    Article  ADS  Google Scholar 

  7. S.Y. Zhou et al. ,Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater. 6 (2007) 770.

    Article  ADS  Google Scholar 

  8. M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today 10 (2007) 20.

    Article  Google Scholar 

  9. Y. Zhang, Y.-W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005) 201.

    Article  ADS  Google Scholar 

  10. V.P. Gusynin and S.G. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett. 95 (2005) 146801 [cond-mat/0506575] [SPIRES].

    Article  ADS  Google Scholar 

  11. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. Lett. 73 (2006) 125411 [cond-mat/0512091].

    ADS  Google Scholar 

  12. D.V. Khveshchenko, Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite, Phys. Rev. Lett. 87 (2001) 206401 [SPIRES].

    Article  ADS  Google Scholar 

  13. E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Magnetic field driven metal-insulator phase transition in planar systems, Phys. Rev. B 66 (2002) 045108 [cond-mat/0202422] [SPIRES].

    ADS  Google Scholar 

  14. I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice, Phys. Rev. Lett. 97 (2006) 146401 [cond-mat/0606195] [SPIRES].

    Article  ADS  Google Scholar 

  15. D.T. Son, critical point in graphene approached in the limit of infinitely strong Coulomb interaction, Phys. Rev. B 75 (2007) 235423 [cond-mat/0701501].

    ADS  Google Scholar 

  16. J.E. Drut and D.T. Son, Renormalization group flow of quartic perturbations in graphene: Strong coupling and large-N limits, Phys. Rev. B 77 (2008) 075115 [arXiv:0710.1315] [SPIRES].

    ADS  Google Scholar 

  17. A.H. Castro Neto, Pauling’s dreams for graphene, Physics 2 (2009) 30.

    Article  Google Scholar 

  18. I.F. Herbut, V. Juricic and B. Roy, Theory of interacting electrons on the honeycomb lattice, Phys. Rev. B 79 (2009) 085116 [arXiv:0811.0610] [SPIRES].

    ADS  Google Scholar 

  19. I.F. Herbut, V. Juricic and O. Vafek, Relativistic Mott criticality in graphene, Phys. Rev. B 80 (2009) 075432 [arXiv:0904.1019] [SPIRES].

    ADS  Google Scholar 

  20. V. Juricic, I.F. Herbut and G.W. Semenoff, Coulomb interaction at the metal-insulator critical point in graphene, Phys. Rev. B 80 (2009) 081405 [arXiv:0906.3513] [SPIRES].

    ADS  Google Scholar 

  21. W. Armour, S. Hands and C. Strouthos, Monte Carlo simulation of the semimetal-insulator phase transition in monolayer graphene, Phys. Rev. B 81 (2010) 125105 [arXiv:0910.5646] [SPIRES].

    ADS  Google Scholar 

  22. W. Armour, S. Hands and C. Strouthos, Lattice simulations near the semimetal-insulator phase transition of graphene, arXiv:0908.0118 [SPIRES].

  23. S. Hands and C. Strouthos, Quantum phase transition in a graphene model, J. Phys. Conf. Ser. 150 (2009) 042191 [arXiv:0808.2720] [SPIRES].

    Article  ADS  Google Scholar 

  24. S. Hands and C. Strouthos, Quantum critical behaviour in a graphene-like model, Phys. Rev. B 78 (2008) 165423 [arXiv:0806.4877] [SPIRES].

    ADS  Google Scholar 

  25. J.E. Drut and T.A. Lahde, Critical exponents of the semimetal-insulator transition in graphene: a Monte Carlo study, Phys. Rev. B 79 (2009) 241405 [arXiv:0905.1320] [SPIRES].

    ADS  Google Scholar 

  26. J.E. Drut, T.A. Lahde and L. Suoranta, First-order chiral transition in the compact lattice theory of graphene and the case for improved actions, arXiv:1002.1273 [SPIRES].

  27. J.E. Drut and T.A. Lahde, Lattice field theory simulations of graphene, arXiv:0901.0584 [SPIRES].

  28. J.E. Drut and T.A. Lahde, Is graphene in vacuum an insulator?, arXiv:0807.0834 [SPIRES].

  29. J.E. Drut, T.A. Lahde and E. Tolo, Signatures of a gap in the conductivity of graphene, arXiv:1005.5089 [SPIRES].

  30. J.E. Drut, T.A. Lahde and E. Tolo, Graphene: from materials science to particle physics, PoS LATTICE2010 (2010) 006 [arXiv:1011.0643] [SPIRES].

  31. Y. Zhang et al., Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96 (2006) 136806 [cond-mat/0602649].

    Article  ADS  Google Scholar 

  32. D.A. Abanin et al., Dissipative quantum Hall effect in graphene near the Dirac point, Phys. Rev. Lett. 98 (2007) 196806 [cond-mat/0702125].

    Article  ADS  Google Scholar 

  33. Z. Jiang et al., Quantum Hall states near the charge-neutral Dirac point in graphene, Phys. Rev. Lett. 99 (2007) 106802 [arXiv:0705.1102].

    Article  ADS  Google Scholar 

  34. A.J.M. Giesbers et al., Quantum-Hall activation gaps in graphene, Phys. Rev. Lett. 99 (2007) 206803 [arXiv:1009.5485].

    Article  ADS  Google Scholar 

  35. J.G. Checkelsky, L. Li and N.P. Ong, Zero-energy state in graphene in a high magnetic field, Phys. Rev. Lett. 100 (2008) 206801 [arXiv:0708.1959].

    Article  ADS  Google Scholar 

  36. J.G. Checkelsky, L. Li, N.P. Ong, Divergent resistance at the Dirac point in graphene: evidence for a transition in a high magnetic field, Phys. Rev. B 79 (2009) 115434 [arXiv:0808.0906].

    ADS  Google Scholar 

  37. L. Zhang et al., Breakdown of the N = 0 quantum Hall state in graphene: two insulating regimes, Phys. Rev. B 80 (2009) 241412 [arXiv:0904.1996].

    ADS  Google Scholar 

  38. A.J.M. Giesbers et al., Gap opening in the zeroth Landau level of graphene, Phys. Rev. B 80 (2009) 201403(R) [arXiv:0904.0948].

    ADS  Google Scholar 

  39. Xu Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462 (2009) 192.

    Article  ADS  Google Scholar 

  40. K.I. Bolotin et al., Observation of the fractional quantum Hall effect in graphene, Nature 462 (2009) 196.

    Article  ADS  Google Scholar 

  41. D.A. Abanin et al., Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength, Phys. Rev. B 81 (2010) 115410 [arXiv:0912.1134].

    ADS  Google Scholar 

  42. C.R. Dean et al., Multicomponent fractional quantum Hall effect in graphene, arXiv:1010.1179.

  43. F. Ghahari et al., Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene, Phys. Rev. Lett. 106 (2011) 046801.

    Article  ADS  Google Scholar 

  44. K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys. 89 (1992) 1161 [SPIRES].

    Article  MathSciNet  Google Scholar 

  45. K.G. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Theor. Math. Phys. 90 (1992) 1 [SPIRES].

    Article  MathSciNet  Google Scholar 

  46. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [hep-ph/9405262] [SPIRES].

    Article  ADS  Google Scholar 

  47. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. D 52 (1995) 4718 [hep-th/9407168] [SPIRES].

    ADS  Google Scholar 

  48. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B 462 (1996) 249 [hep-ph/9509320] [SPIRES].

    Article  ADS  Google Scholar 

  49. V.P. Gusynin, V.A. Miransky, S.G. Sharapov and I.A. Shovkovy, Excitonic gap, phase transition and quantum Hall effect in graphene, Phys. Rev. B 74 (2006) 195429 [cond-mat/0605348] [SPIRES].

    ADS  Google Scholar 

  50. I.F. Herbut, Pseudomagnetic catalysis of the time-reversal symmetry breaking in graphene, Phys. Rev. B 78 (2008) 205433 [arXiv:0804.3594].

    ADS  Google Scholar 

  51. E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamics in the quantum Hall effect and the phase diagram of graphene, Phys. Rev. B 78 (2008) 085437 [arXiv:0806.0846] [SPIRES].

    ADS  Google Scholar 

  52. M. Ezawa, Intrinsic Zeeman effect in graphene, J. Phys. Soc. Jpn. 76 (2007) 094701 [SPIRES].

    Article  ADS  Google Scholar 

  53. G.W. Semenoff, I.A. Shovkovy and L.C.R. Wijewardhana, Phase transition induced by a magnetic field, Mod. Phys. Lett. A 13 (1998) 1143 [hep-ph/9803371] [SPIRES].

    Article  ADS  Google Scholar 

  54. V.P. Gusynin, S.G. Sharapov and J.P. Carbotte, AC conductivity of graphene: from tight-binding model to 2 + 1-dimensional quantum electrodynamics, Int. J. Mod. Phys. B 21 (2007) 4611 [arXiv:0706.3016] [SPIRES].

    ADS  Google Scholar 

  55. K. Nomura, A.H. MacDonald, Quantum Hall ferromagnetism in graphene, Phys. Rev. Lett. 96 (2006) 256602 [cond-mat/0604113].

    Article  ADS  Google Scholar 

  56. S.M. Girvin and A.H. MacDonald, Multicomponent quantum Hall systems: the sum of their parts and more, in Perspectives in Quantum Hall Effects, S. Das Sarma and A. Pinczuk eds., John Wiley and Soons, New York U.S.A. (1997).

  57. K. Yang, S. Das Sarma and A.H. MacDonald, Collective modes and skyrmion excitations in graphene SU(4) quantum Hall ferromagnets, Phys. Rev. B 74 (2006) 075423.

    ADS  Google Scholar 

  58. A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. A.N. Redlich, Gauge noninvariance and parity nonconservation of three-dimensional fermions, Phys. Rev. Lett. 52 (1984) 18 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. S. Ryu, C. Mudry, C.-Y. Hou, C. Chamon, Masses in graphenelike two-dimensional electronic systems: topological defects in order parameters and their fractional exchange statistics, Phys. Rev. B 80 (2009) 205319.

    ADS  Google Scholar 

  63. A. Tanaka, X. Hu, Many-body spin Berry phases emerging from the π-flux state: competition between antiferromagnetism and the valence-bond-solid state, Phys. Rev. Lett. 95 (2005) 036402.

    Article  ADS  Google Scholar 

  64. A. Tanaka, X. Hu, Effective field theory with a θ-vacua structure for two-dimensional spin systems, Phys. Rev. B 74 (2006) 140407.

    ADS  Google Scholar 

  65. P. Ghaemi, S. Ryu, D.-H. Lee, The quantum valley Hall effect in proximity-induced superconducting graphene: an experimental window for deconfined quantum criticality, arXiv:0704.2234.

  66. I.F. Herbut, Zero-energy states and fragmentation of spin in the easy- plane antiferromagnet on honeycomb lattice, Phys. Rev. Lett. 99 (2007) 206404 [arXiv:0704.2234] [SPIRES].

    Article  ADS  Google Scholar 

  67. J. Gonzalez, F. Guinea and M.A.H. Vozmediano, NonFermi liquid behavior of electrons in the half filled honeycomb lattice (A Renormalization group approach), Nucl. Phys. B 424 (1994) 595 [hep-th/9311105] [SPIRES].

    Article  ADS  Google Scholar 

  68. J. Gonzalez, F. Guinea and M.A.H. Vozmediano, Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction, Phys. Rev. B 59 (1999) 2474(R) [cond-mat/0302164].

  69. H. Leal and D.V. Khveshchenko, Excitonic instability in two-dimensional degenerate semimetals, Nucl. Phys. B 687 (2004) 323 [cond-mat/0302164] [SPIRES].

    ADS  Google Scholar 

  70. D.V. Khveshchenko, Coulomb-interacting Dirac fermions in disordered graphene, Phys. Rev. B 74 (2006) 161402 [cond-mat/0612651].

    ADS  Google Scholar 

  71. E.G. Mishchenko, Effect of electron-electron interactions on the conductivity of clean graphene, Phys. Rev. Lett. 98 (2007) 216801 [cond-mat/0604601].

    Article  ADS  Google Scholar 

  72. D.E. Sheehy, J. Schmalian, Quantum critical scaling in graphene, Phys. Rev. Lett. 99 (2007) 226803.

    Article  ADS  Google Scholar 

  73. O. Vafek, M.J. Case, Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential, Phys. Rev. B 77 (2008) 033410 [arXiv:1103.6285].

    ADS  Google Scholar 

  74. J. Alicea, M.P.A. Fisher, Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes, Phys. Rev. B 74 (2006) 075422 [SPIRES].

    ADS  Google Scholar 

  75. M. Kharitonov, Phase diagram for the ν = 0 quantum Hall state in monolayer graphene, SPIRES.

  76. R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13 (1976) 3398 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  77. A.J. Niemi and G.W. Semenoff, Fermion number fractionization in quantum field theory, Phys. Rept. 135 (1986) 99 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  78. S.R. Coleman and B.R. Hill, No more corrections to the topological mass term in QED in three-dimensions, Phys. Lett. B 159 (1985) 184 [SPIRES].

    ADS  Google Scholar 

  79. G.W. Semenoff, P. Sodano and Y.-S. Wu, Renormalization of the statistics parameter in three-dimensional electrodynamics, Phys. Rev. Lett. 62 (1989) 715 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon W. Semenoff.

Additional information

ArXiv ePrint: 1104.4714

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenoff, G.W., Zhou, F. Magnetic catalysis and quantum Hall ferromagnetism in weakly coupled graphene. J. High Energ. Phys. 2011, 37 (2011). https://doi.org/10.1007/JHEP07(2011)037

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)037

Keywords

Navigation