Skip to main content
Log in

Higgs boson phenomenology in τ+τ final states at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We perform a detailed parton level study on the feasibility of the detection of a Higgs boson in the gluon fusion process pp(gg + gq) → h + jet → τ+τ- + jet at the Large Hadron Collider (LHC) for √s = 14 TeV. The obtained results are applied to a few chosen Beyond the Standard Model (BSM) scenarios where the branching ratio of a Higgs boson decaying into a τ+τ pair is enhanced as compared to the Standard Model (SM) case. We present the parameter space of the BSM scenarios that can be observed at the LHC and conclude that some regions of the parameter space can be probed with just a few fb −1 of integrated luminosity. Noticeably, our results are presented in a form which potentially allows their application to any generic model giving rise to a pp(gg + gq) → h + jet → τ+τ + jet signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDF collaboration, Combined upper limit on standard model Higgs boson production for winter 2009, http://www-cdf.fnal.gov/physics/new/hdg/results/combcdf 090116, CDF Note 9674.

  2. D0 collaboration, Combined upper limits on standard model Higgs boson production from the D0 experiment in 0.9 − 5.0fb( − 1), http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm, D0 Note 5984-CONF.

  3. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  4. S. Abdullin et al., Summary of the CMS potential for the Higgs boson discovery, Eur. Phys. J. C 39S2 (2005) 41 [SPIRES].

    Article  ADS  Google Scholar 

  5. D. Cavalli et al., The Higgs working group: summary report, hep-ph/0203056 [SPIRES].

  6. CDF and D0 collaboration, Combined CDF and D0 upper limits on MSSM Higgs boson production in tau-tau final states with up to 2.2 fb( − 1) of data, FERMILAB-PUB-09-394-E, http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm.

  7. H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].

    Article  ADS  Google Scholar 

  8. D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for H → ττ in weak boson fusion at the LHC, Phys. Rev. D 59 (1999) 014037 [hep-ph/9808468] [SPIRES].

    ADS  Google Scholar 

  9. R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ+τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [SPIRES].

    Article  ADS  Google Scholar 

  10. B. Mellado, W. Quayle and S.L. Wu, Prospects for the observation of a Higgs boson with H → τ+τ → ℓ+ missing-p T associated with one jet at the LHC, Phys. Lett. B 611 (2005) 60 [hep-ph/0406095] [SPIRES].

    ADS  Google Scholar 

  11. U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [SPIRES].

    Article  ADS  Google Scholar 

  12. O. Brein and W. Hollik, MSSM Higgs bosons associated with high-p T jets at hadron colliders, Phys. Rev. D 68 (2003) 095006 [hep-ph/0305321] [SPIRES].

    ADS  Google Scholar 

  13. O. Brein and W. Hollik, Distributions for MSSM Higgs boson + jet production at hadron colliders, Phys. Rev. D 76 (2007) 035002 [arXiv:0705.2744] [SPIRES].

    ADS  Google Scholar 

  14. P. Nath et al., The hunt for new physics at the Large Hadron Collider, 1001.2693 [SPIRES].

  15. C.R. Schmidt, Hggg(\(gq\bar{q} \)) at two loops in the large-M t limit, Phys. Lett. B 413 (1997) 391 [hep-ph/9707448] [SPIRES].

    ADS  Google Scholar 

  16. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [SPIRES].

    Article  ADS  Google Scholar 

  17. V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [SPIRES].

    Article  ADS  Google Scholar 

  18. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [SPIRES].

    Article  ADS  Google Scholar 

  19. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].

    Article  ADS  Google Scholar 

  20. S. Catani, E. D’Emilio and L. Trentadue, The gluon form-factor to higher orders: gluon gluon annihilation at small Q-transverse, Phys. Lett. B 211 (1988) 335 [SPIRES].

    ADS  Google Scholar 

  21. I. Hinchliffe and S.F. Novaes, On the mean transverse momentum of Higgs bosons at the SSC, Phys. Rev. D 38 (1988) 3475 [SPIRES].

    ADS  Google Scholar 

  22. R.P. Kauffman, Higgs boson p T in gluon fusion, Phys. Rev. D 44 (1991) 1415 [SPIRES].

    ADS  Google Scholar 

  23. R.P. Kauffman, Higher order corrections to Higgs boson p T , Phys. Rev. D 45 (1992) 1512 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. C. Balázs and C.P. Yuan, Higgs boson production at the LHC with soft gluon effects, Phys. Lett. B 478 (2000) 192 [hep-ph/0001103] [SPIRES].

    ADS  Google Scholar 

  25. E.L. Berger and J.-w. Qiu, Differential cross section for Higgs boson production including all-orders soft gluon resummation, Phys. Rev. D 67 (2003) 034026 [hep-ph/0210135] [SPIRES].

    ADS  Google Scholar 

  26. A. Kulesza and W.J. Stirling, Nonperturbative effects and the resummed Higgs transverse momentum distribution at the LHC, JHEP 12 (2003) 056 [hep-ph/0307208] [SPIRES].

    Article  ADS  Google Scholar 

  27. A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation for Higgs production, Phys. Rev. D 69 (2004) 014012 [hep-ph/0309264] [SPIRES].

    ADS  Google Scholar 

  28. A. Gawron and J. Kwiecinski, Resummation effects in Higgs boson transverse momentum distribution within the framework of unintegrated parton distributions, Phys. Rev. D 70 (2004) 014003 [hep-ph/0309303] [SPIRES].

    ADS  Google Scholar 

  29. G. Watt, A.D. Martin and M.G. Ryskin, Unintegrated parton distributions and electroweak boson production at hadron colliders, Phys. Rev. D 70 (2004) 014012 [Erratum ibid. D 70 (2004) 079902] [hep-ph/0309096] [SPIRES].

    ADS  Google Scholar 

  30. A.V. Lipatov and N.P. Zotov, Higgs boson production at hadron colliders in the k(T)-factorization approach, Eur. Phys. J. C 44 (2005) 559 [hep-ph/0501172] [SPIRES].

    Article  ADS  Google Scholar 

  31. D. de Florian and M. Grazzini, Next-to-Next-to-Leading logarithmic corrections at small transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678 [hep-ph/0008152] [SPIRES].

    Article  ADS  Google Scholar 

  32. D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247 [hep-ph/0108273] [SPIRES].

    Article  ADS  Google Scholar 

  33. S. Catani, D. de Florian and M. Grazzini, Universality of non-leading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [SPIRES].

    Article  ADS  Google Scholar 

  34. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q(T) spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [SPIRES].

    ADS  Google Scholar 

  35. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [SPIRES].

    Article  ADS  Google Scholar 

  36. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [SPIRES].

    ADS  Google Scholar 

  37. A. Belyaev, T. Han and R. Rosenfeld, ggh → τ+τ at the upgraded Fermilab Tevatron, JHEP 07 (2003) 021 [hep-ph/0204210] [SPIRES].

    Article  ADS  Google Scholar 

  38. A. Belyaev, A. Blum, R.S. Chivukula and E.H. Simmons, The meaning of Higgs: τ+τ and γγ at the Tevatron and the LHC, Phys. Rev. D 72 (2005) 055022 [hep-ph/0506086] [SPIRES].

    ADS  Google Scholar 

  39. A. Belyaev, R. Guedes, S. Moretti and R. Santos, work in progress.

  40. A. Belyaev, R. Guedes, S. Moretti and R. Santos, Very light Higgs bosons in extended models at the LHC, Phys. Rev. D 81 (2010) 095006 [arXiv:0912.4150] [SPIRES].

    ADS  Google Scholar 

  41. M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [SPIRES].

    Article  ADS  Google Scholar 

  42. M. Aoki, S. Kanemura and O. Seto, A model of TeV scale physics for neutrino mass, dark matter and baryon asymmetry and its phenomenology, Phys. Rev. D 80 (2009) 033007 [arXiv:0904.3829] [SPIRES].

    ADS  Google Scholar 

  43. H.-S. Goh, L.J. Hall and P. Kumar, The leptonic Higgs as a messenger of dark matter, JHEP 05 (2009) 097 [arXiv:0902.0814] [SPIRES].

    Article  ADS  Google Scholar 

  44. N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [SPIRES].

    ADS  Google Scholar 

  45. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].

    ADS  Google Scholar 

  46. S. Abdullin et al., Higgs boson discovery potential of LHC in the channel pp → γγ + jet, Phys. Lett. B 431 (1998) 410 [hep-ph/9805341] [SPIRES].

    ADS  Google Scholar 

  47. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  48. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  49. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  50. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  51. T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  52. J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [SPIRES].

    Article  ADS  Google Scholar 

  53. T. Hahn and J.I. Illana, Extensions in FormCalc 5.3, PoS ACAT2007 (2007) 074 [arXiv:0708.3652] [SPIRES].

  54. T. Hahn and J.I. Illana, Excursions into FeynArts and FormCalc, Nucl. Phys. Proc. Suppl. 160 (2006) 101 [hep-ph/0607049] [SPIRES].

    Article  ADS  Google Scholar 

  55. T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].

    Article  ADS  Google Scholar 

  56. G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  57. T. Hahn, Loop calculations with FeynArts, FormCalc and LoopTools, Acta Phys. Polon. B 30 (1999) 3469 [hep-ph/9910227] [SPIRES].

    ADS  Google Scholar 

  58. J. Pumplin, A. Belyaev, J. Huston, D. Stump and W.K. Tung, Parton distributions and the strong coupling: CTEQ6AB PDFs, JHEP 02 (2006) 032 [hep-ph/0512167] [SPIRES].

    Article  ADS  Google Scholar 

  59. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  60. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [SPIRES].

    ADS  Google Scholar 

  61. V.D. Barger, J.L. Hewett and R.J.N. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [SPIRES].

    ADS  Google Scholar 

  62. R.M. Barnett, G. Senjanović, L. Wolfenstein and D. Wyler, Implications of a light Higgs scalar, Phys. Lett. B 136 (1984) 191 [SPIRES].

    ADS  Google Scholar 

  63. R.M. Barnett, G. Senjanović and D. Wyler, Tracking down Higgs scalars with enhanced couplings, Phys. Rev. D 30 (1984) 1529 [SPIRES].

    ADS  Google Scholar 

  64. A.G. Akeroyd, Non-minimal neutral Higgs bosons at LEP2, Phys. Lett. B 377 (1996) 95 [hep-ph/9603445] [SPIRES].

    ADS  Google Scholar 

  65. S. Su and B. Thomas, The LHC discovery potential of a Leptophilic Higgs, Phys. Rev. D 79 (2009) 095014 [arXiv:0903.0667] [SPIRES].

    ADS  Google Scholar 

  66. A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double neutral Higgs production in the two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [SPIRES].

    Article  ADS  Google Scholar 

  67. A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].

    ADS  Google Scholar 

  68. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [SPIRES].

    ADS  Google Scholar 

  69. B. Grzadkowski, O.M. Ogreid and P. Osland, Natural multi-Higgs model with dark matter and CP-violation, Phys. Rev. D 80 (2009) 055013 [arXiv:0904.2173] [SPIRES].

    ADS  Google Scholar 

  70. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [SPIRES].

    ADS  Google Scholar 

  71. A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree-level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [SPIRES].

    ADS  Google Scholar 

  72. J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [SPIRES].

    Article  ADS  Google Scholar 

  73. H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [SPIRES].

    ADS  Google Scholar 

  74. P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [SPIRES].

    ADS  Google Scholar 

  75. M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs- doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [SPIRES].

    Article  ADS  Google Scholar 

  76. I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007) 035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [SPIRES].

    ADS  Google Scholar 

  77. A. Barroso and P.M. Ferreira, Charge breaking bounds in the Zee model, Phys. Rev. D 72 (2005) 075010 [hep-ph/0507128] [SPIRES].

    ADS  Google Scholar 

  78. M. Gomez-Bock et al., Rompimiento de la simetria electrodebil y la fisica del Higgs: conceptos basicos, J. Phys. Conf. Ser. 18 (2005) 74 [hep-ph/0509077] [SPIRES].

    Article  ADS  Google Scholar 

  79. A. Denner, R.J. Guth, W. Hollik and J.H. Kuhn, The Z width in the two Higgs doublet model, Z. Phys. C 51 (1991) 695 [SPIRES].

    ADS  Google Scholar 

  80. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  81. http://lepewwg.web.cern.ch/LEPEWWG/.

  82. http://www-sld.slac.stanford.edu/sldwww/sld.html.

  83. A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the Two-Higgs-Doublet-Model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [SPIRES].

    ADS  Google Scholar 

  84. Belle collaboration, K. Abe et al., Improved measurement of inclusive radiative B-meson decays, AIP Conf. Proc. 1078 (2009) 342 [arXiv:0804.1580] [SPIRES].

    Google Scholar 

  85. BABAR collaboration, B. Aubert et al., Measurement of the BX s γ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [SPIRES].

    ADS  Google Scholar 

  86. CLEO collaboration, S. Chen et al., Branching fraction and photon energy spectrum for bsγ, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [SPIRES].

    Article  ADS  Google Scholar 

  87. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

  88. T. Goto and Y. Okada, Charged Higgs mass bound from the bsγ process in the minimal supergravity model, Prog. Theor. Phys. 94 (1995) 407 [hep-ph/9412225] [SPIRES].

    Article  ADS  Google Scholar 

  89. M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to BX s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [SPIRES].

    ADS  Google Scholar 

  90. A.G. Akeroyd and S. Recksiegel, The effect of H ± on B ± → τ± ντ and B ± → μ± νμ, J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].

    ADS  Google Scholar 

  91. M. Krawczyk and D. Sokolowska, The charged Higgs boson mass in the 2HDM: decoupling and CP-violation, arXiv:0711.4900 [SPIRES].

  92. M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic tau decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, A., Guedes, R., Moretti, S. et al. Higgs boson phenomenology in τ+τ final states at the LHC. J. High Energ. Phys. 2010, 51 (2010). https://doi.org/10.1007/JHEP07(2010)051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)051

Keywords

Navigation